

Copyright

Portions of this manual contain material reprinted by
permission of:

SONY Corporation, Copyright 1983

Trademarks

MS-DOS and Microsoft are registered trademarks of the
Microsoft Corporation.

CP/M is a registered trademark of Digital Research.

Itis possible that this rtanual may contain references to or describe AFricot roducts which
are not available in your country. Such references or infermation should not be taken as an
understanding that these products will become available,

Informatian contained in this document is subject to change without natice and does nat
represent a commitment on the part of Apricot.

All rights reserved, no use or disciosure without written cansent.
Copyright “ Apricot Computers plc

Published in the UK. by Published in the USA by
Apricot UK Ltd Apricot Inc.

Shenstane House 47173 Benicia Street
Dudley Read Fremont

Halesowen California 94538

West Midlands B63 3NT

Preface

The Technical Reference Manual for the ACT Apricot F1
microcomputer is intended for programmers and engineers
involved in hardware and software design for the F 1.

The Manual is divided into three sections and a number of
appendices as detailed below.

1. Overview

This section provides an overall description of the F1 and i s

sub-divided into three chapters:

System Overview

This chapter presents an overall picture of the F 1
concentrating on mainly the hardware, but also including
information on some of the software aspects which are
integral to the machines’ operation.

Software

This chapter provides a brief description of the operating
system and it's interface o the associated BIOS. An
introduction 1o the software modules of the BIOS is also
provided.

Options

This chapter forms the introduction to all the other ACT
hardware options available for extending the capabilities of
any machine within the range.

2. Hardware Detail

This section contains detailed descriptions of all the
hardware aspects of the microcomputer and is divided into a
number of chapters, as detailed in the following Contents
section.

The Systems Unit and the Keyboard of the F1 are discussed
in detail with major programmable elements (e.g. serial port,
display circuitry, etc.) also having separate descriptions.

FPreface

7

3. Software Detail

This section contains a detailed description of all software
aspects of the BIOS and is also divided into a number of
chapters. The first provides a detailed description of the
B10S as a whole. Subsequent chapters detail the features
and facilities of the individual hardware device drivers.

Appendices

A number of appendices are included in this manual which
provide general hardware reference information and also

- associated software information of specific use to
systems/application programmers.

Addenda

This section details installable device drivers supplied as
system software and will also be expanded to reflect updates
and changes as the product continues to be developed.

Associated Publications

MICROSOFT MS-DOS Programmer’s Reference Guide

This is an absolute necessity for anybody who wants to
develop software for the Apricot. It provides details of:

1. MS-DOS 2.00 system calls and interrupts.

2. How to produce and install new device drivers.

3. MS-DOS memory maps, disk layout, DOS initialisation
and many more technical details.

The UK source of this product is:

Order Processing Dept
Microsoft Ltd, Piper House
Hatch Lane, Windsor, BERKS.

DIGITAL RESEARCH GSX-86 Graphics Extension
Programmer’s Guide

This is a necessity for any programmer who wishes to
produce graphics based packages interfacing to Apricot’s
implementation of the Digital Research GSX module. This
product can be obtained through your local ACT dealer.

2 Preface

The 8086 Family User's Manual

This provides descriptive material on the Intel 8086
processor and includes all the necessary details on the
instruction sets for asssembly language programmers.
The manual can be obtained from an Intel distributor.

Preface 3

Contents

1.1 System Qverview

Introduction
Details

2
3
3 Packaging and styling
6 Processing Capability
8 Memory

9 Disk Drives

10 Display Features

13 Keyboard

77 Printer Support

18 Communications

20 Expansion

21 Specification

1.2 Software Overview

Introduction

Details

Applications Interface
Operating Systems interface
MS-DOS

ROM BIOS

Sl

—
S~0UDBNWW N gy OWOARN N

Options

Iintroduction

Details

Display Options

RAM Expansion Boards
Modem Board

LAN Board

Mouse

Apricot MSD
Expansion Unit

s LS

Cbnfem‘s 7

2.1 Systems Unit

Introduction

Details

Mechanics

Connectors

Front Panel

System Board

Infra-Red Detector Board
Disk Drive Unit
Expansion

Power Supply

Physical dimensions

NS - el
NQOQOWOOORWLW N

OO N

System Detail

Introduction

Details

General

Processor

Memory

70 Interrupt Control

77 Display Control

15 Floppy Disk Control
16 Expansion

77 Keyboard/Mouse data
78 System Reset

79 RS8232 Communications
20 Parallel Printer Port
21 System Timer

21 Sound Generation

22 Port Addresses

2 Confents

2.3

Interrupt Control

Introduction

Details

General

Maskable Interrupt vectors
Non-Maskabie interrupt (NMI)
Programming the controllers
Interrupt Control Sequence
Maskable Interrupts

Programming

Display Control | |

Introduction

Details

General

Display modes and Features
Drive Signals

Circuitry

Display RAM

Painter RAM

Palette RAM

Mode Selection

Refresh control and Timing
Display Connectors

Expansion

Introduction

Details

General

Expansion Slot
Expansion Connector
Electrical Specification
Pin Detail

Address Aliocation
Using Interrupts
Expansion Board Layout

Contenis 3

2.6 Floppy Disk Interface

2 introduction

3 Details

3 General

5 Disk Write

6 Disk Read

7 Disk formatting

&8 Read/write head positioning

10 FDC detail

710 General

71 Processor Interface
77 Data Requests

72 Interrupt Requests

14 Disk Drive CONtrol =« = mr e e

76 Command Register
76 Status Register

76 Track Register

76 Data Register

17 Programming Considerations
17 General

78 Disk Drive Selection

78 Motor Control

19 Head Loading

79 Head Positioning

23 Data Transfers

28 Formatting Commands

33 Force Interrupt Command

35 Interface Connection Detail
35 System Connections
37 Disk Drive Unit Connections

39 Track Format

4 Contents

2.7 Serial Interface

Introduction

Details

General

SI10 Qverview

S10 Architecture
Processor interface
Write Register Definition
Write Register Summary
Write Register O

Write Register 1

Write Register 2

Write Register 3

Write Register 5

Write Register 6

Write Register 7

Read Register Definition
Read Register O

Read Register 1

Read Register 2

SI0 Interrupt Sequence
Keyboard/Mouse Data
Sound Generation

Channel A Programming Details

Copy Registers
Initialisation
Generating Sound

RS§232C Communications

General
RS232C Connector Detail

Channe! B Programming Details

Copy Registers
Setting the Base Vector

Asynchronous Communications

S10 Pin Detail

System Connections
Channel A Connections
Channel B Connections

Contents &

Mo
OO ONTTRBA N g NNUNN ONRWW N o

A
OO0

14
16
16

Printer Interface

Introduction

Details

General

Data Transfers
Connector Detail
Address Allocation

Programming Considerations
Data Port

Printer Status

Data Strobe

Timer

Introduction

Details

Gener4l

Channel modes
Clock rates
Interrupts
Channel usage
Address allocation

Programming Considerations
Initialisation

Setting the base interrupt vector
Channel O: Expansion interrupts
Channel 1: RS232C baud rate
Channel 2: Sound Frequency
Channel 3: System Clock

Return from Interrupt Sequence

2.10 Sound Generation

QNN OORhaAa N

a8

Introduction

Details
General
Generating Sound
Address allocation

Programming Considerations
General

Initialisation

Simple tones

Complex sounds

Contents

2.11 Disk Drive

2 Introduction
4 Details
4 General
4 Interface Details
& Interface Connections {Outputs)
7 Interface Connections {Inputs)
9 Disk Drive Mechanism
9 Read/Write Heads
9 Head Positioning Mechanism
9 Head Load Mechanism
70 Sensors and Detectors
70 Drive Switch Settings
12
73 Disks
73 General
73 Disk Precautions
74 Disk insertion/Removal
74 Write Protecting
74 Disk Format
2.12 Keyboard
2 [Introduction
3 Details
3 Mechanics
4 Circuitry
4 Keyboard Scanning
5 Data Transmission Format
6 Keycode Data Encoding
117 Special Keys

Contents 7

Introduction
Bootstrap
Initialised drivers
Initialised BIOS

Memory Map
Software interrupts
Hardware interrupts
Pointers
20 ASCII and Bit Screen Images
20 RAM BIOS for MiS-DOS

2

3

5

7

8 Built-in functions
9
717
16
17

Disk Label Sector and Configuration Table

Control device

QOverview

21
3.2
2
3 General application
3 Introduction
4 Low level Control device access
5 High level Control device access
7 Errors
8 Specific application
9 Device Numbers
10 Screen
12 Keyboard
74 Serial 1/O
18 Parallel /O
20 Mouse
27 Clock
22 Sound
24 Floppy disk
26 Winchester

8 Contents

3.3

Lo ww.‘-ﬁ‘ﬂ‘&l“\ﬂ
%m@rﬁmw NNOMWONORLL N

w
oM N

e e Tt
HAhhwwhOQ

DY MO R~ =~ -
NNDOI,HoI O

Screen driver

Overview

Application interest

Screen images

Using ESCape sequences
Screen environment

Apricot compatible mode
Colour

ANSI ESCape sequences
Windows and Cursor addressing
Fonts

Ascii control codes

Systems interest
Screen Bit Image
Character attributes
40 Column mode
Scrolling
Configuration table

Keyboard driver

Overview

Application interest

Changing the keyboard table
Implementing STRING keys

Changing the keyboard driver operation
Special Keys

Default STRINGS

Prefixes

User Interrupt (FQ hex)

Systems interest
Initialisation

Steering

Down-code handier
Queues
Configurator
Apricot compatibility
Configuration table

Contenis 8

PO HHWW N oy

o
NN o

e T T

VWO ONORRWW N g

Serial /0 Driver

Overview

Applications interest
Configuring the Serial Driver
Generic differences

User Interrupts

Systems interest
Configuration table

Parallel 1/0 Driver

Overview

Systems interest

Clock Driver

Overview
Applications interest
Systems interest

Sound Driver

Overview
Applications interest
Systems interest

Disk Driver

Overview

Applications interest
Non-MSDQOS systems
Drive types

L.abel Sector

MS-DOS format

Disk formats

Disk Swapping

Systems interest
Configuration data

10 Contents

3.10 GSX — GI0OS Details

Ty el

Do W N

Overview

Applications interest
Display features
Calling GSX

Additions to GSX 1.3

Systems interest
System files

Contents 717

Appendice

A — Diagnostic Error Cotes
B — Default Keyboard Table
C — Astcii codes

D — Circuit Diagrams

E— ESCaposequencorcferencetale =~~~

2 Specials
3 Character attributes
4 Screen attributes
5 Colour
& Cursor positioning
7 WP primitives
10 Driver environment
73 Keyboard interaction
15 Qeneric obsoletes

F — Language interfaces

Overview

Interpretive Basic
The Data Segment Register
Non-BIOS routine calls

Compiled Basic
The Data Segment Register
Non-BIOS routine cails

‘C’ Programming Language
The Data Segment Register
Non-BIOS routine calls

S©® NN 0w N

Index

12 Contents

Section 1
Overview

Contents

Introduction

Details
Packaging and styling
Processing Capability

Memory
Disk Drives

Display Features

Keyboard

Printer Support
Communications
Expansion
Specification

lustrations
1. Apricot F 1.

System Overview 1.7]7

introduction

The F 1 is a full function business microcomputer, complete
with a minimum of 256 Kbyte of RAM and a single
double-sided MicroFloppy disk drive. lt contains a
sophisticated ROM based BiOS and the capability to drive
either a monochrome or a colour monitor in a variety of
resolutions and modes.

The standard features found on the F1 micro are:

1. Parallel printer interface.

2. Asynchronous and synchronous R5232
communications capabilities.

3. Expandibility (via an ACT compatible expansion Slot
and/or a separate Expansion Unit).

4, Low profile professionally styled Keyboard with
OWERTY typewriter layout, calculator keypad and
function keys.

5. Flexible display driver circuitry which allows the
programmer to drive a colour monitor {optional) in a
variety of resolutions and display modes. Alternatively,
the same circuitry can be configured to drive a
monochrome monitor or a standard domestic TV
{requires the optional TV modulator).

Instead of being linked to the Systems Unit by a cable, the
Keyboard uses an infra-red link for transmission of keycodes
and other data (time and date information, hardware reset,
etc). Multiple machine environments where infra-red
interference could occur from other users are catered for by
the use of a “light-pipe”. This acts as a transmission line
which directs the infra-red from the Keyboard to its parent
Systems Unit.

7.7/2 System Overview

Uetails

Packaging and Styling

The F1 is composed of two main sections as previously
mentioned; the Systems Unit and the Keyboard (see Figure 1).
The machines are made into a full computer system by the
addition of an appropriate display device. (A variety of
different monitors are currently available as optional items
from ACT. These include 9 inch and 12 inch monochrome
monitors and a 10 inch colour monitor).

1. Systems Unit

2. Keyboard

3. IR Raceivers

4. Status Indicators
5. Disk Driva

1. Mains Switch and Fuse assembiy

2. PSU Input for Monoghrome Display

3. Centronics Port

4. Compasite Video Jack Socket

8. Colour/Monochrome Display Connector
B.AS232 Port

7. Expansion Plate

8. Expansion Cover

9. IR Transmitters

Figure 1. Apricot F1

System Overview 1.7/3

The Systems Unit houses the majority of the controi
electronics, including the processing system and interfaces
for:

1. A monochrome or colour monitor.

2. A standard domestic TV via an optional modulator.
3. Infra-red keyboard/mouse data.

4. Printers/plotters and similar devices.

b. External communications equipment.

6. Sound Generation.

It also contains the system RAM, a MicroFloppy disk drive,
a power supply and a loudspeaker.

The Keyboard consists of a standard QWERTY typewriter
section plus calculator keypad (with an identical key top

layout to the Apricot pc/xi range of products), a block of 10.... ...

“fixed/programmable” function keys, and four recessed keys
which perform specific fixed functions. It also includes:

1. Four AA batteries which form the power source for the
keyboard electronics.

2. A processing system which provides the interface
between the keys and the infra-red transmission
circuitry.

3. Areal time clock/calendar.

Freedom of user desk space was one of the criteria for using
an infra-red cordless link between the Keyboard and the
Systems Unit. This provides the user with a much greater
flexibilty in positioning the Keyboard relative to the Systems
Unit as compared with the standard cable link approach.

Four LED indicators are located on the front of the Systems
Unit on the left-hand side of the disk drive slot. These provide
the user with indications of various states within the
machine, as specified by the associated indicator legend.

The indicators are normally illuminated to show the following
states:

No Scroll STOP key is active.
Caps CAPS LOCK key is active.

Disk The disk within the disk drive is being
written to or read from.

Power The machine is switched on.

7.1/4 System Overview

Connections for a printer, a display monitor {monochrome or
colour), and external communications equipment are all
located on the back of the Systems Unit. Connections for the
optional modulator for driving a standard domestic TV are
located internaily within the Unit. A connector on the
right-hand side of the Unit is provided for linking in an
optional Expansion Unit.

This is not the only method of expansion available within the
machine. A single Expansion Slot is also located within the
Systems Unit. This is electrically and physically compatible
with all the current ACT Expansion Boards.

The mains switch is also located on the rear of the unit. This
is part of a combined mains switch/fuse holder module. The

fuse is located behind a hinged flap on the switchmodule

housing.

A mains changeover link option is located internally within
the Systems Unit to cater for the two standard mains
operating voltages used throughout the world. This allows
the F1 to be configured at the factory for either 110V or
240V operation.

To meet the desirable goal of quietness of operation, the F 1
does not employ a fan for cooling {the major noise source on
most other micros). Instead, cooling is provided by the
natural airflow created in and around the machine by the
positioning of vents in the case relative to the internal
components which generate most of the heat.

Svstem Overview

1.1/5

Processing Capabhility

The F1 employs the Intel 8086 as the main central
processing element. The features of the Intel 8086 are well
known, being a true 16-bit processor, supported by the two
major microcomputer operating systems companies
(Microsoft with MS-DOS, Digital Research with CPM-86 and
Concurrent DOS), and possessing:

1. 16-bit wide internal register architecture.

2. 16-bit wide external data bus.

3. Segmented addressing structure to support modular
programming.

4. The capability of addressing up to 1 Mbyte of memory
space and up to 64 Kbyte of system |/Q.

The processing system operated on the board is areal time -

interrupt driven system, based upon the interrupt structure
of the 8086 and the interrupt features provided by two Zilog
chips; a Z80 SI0 and a Z80 CTC. These two devices are
daisy-chained and together supply a single interrupt line to
the CPU. Hardware functions and processes which need
interrupt facilities are in turn “connected” to these two
devices (apart from the disk controller which uses the 8086
input NM| instead).

Each Zilog device posseses internal circuitry which perform
the duties of an interrupt manager/arbitrator, making
decisions to determine which hardware-driven process
requires servicing by the 8086. The decisions are made on
an fixed priority basis, with all interrupts fron the 280 SI10
assigned a higher priority than the CTC.

Peripheral support for the 8086 is provided by a mixture of
intelligent support chips and combinations of simpler
standard logic elements.

The intelligent support chips include:

1. A Western Digital WD2797-02 Floppy Disk Controller
for controlling the MicroFloppy Drive.

2. The Zilog Z80 SI0/2 which interfaces to the RS232C
port, receives data from the infra-red keyboard link,
generates sound and also provides part of the interrupt
structure.

3. The Zilog Z80 CTC which acts as a general system
timer, determines the baud rates for the RS232C port
and also provides part of the interrupt structure.

71.7/6 System Qverview

Another processor is located within the Keyboard. Thisis a
NEC 7507 4-bit processor. it is employed to perform
keyboard scanning, encoding of detected keys into a suitable
format for transmission via the infra-red link, and the
implementation of a real time clock/calendar.

Svstem Overview 1.7]7

Memory

The F1 is fitted with a minimum of 256 Kbyte of system
RAM (using 64K DRAMSs) and is expandable by fitting one of
the standard Apricot RAM expansion boards (128K, 256K
or 512K RAM Expansion boards) into the F 1 Expansion Slot
{Initially for the USA market, the F1 is fitted with 512K RAM
as standard using 256K DRAM).

The other major area of memory within the machine is the
Boot ROMSs. The Boot ROMs contain a great deal more code
than the original Apricot pc/xi machines. instead of just
containing a bootstrap loader, diagnostics, calculator, and a
rudimentary screen handler {as with the original disk-based
BIOS machines of the Apricot pc/xi range), the majority of
the BIOS has also been incorporated within ROM.

The ROM BIOS includes all the device driver routines for
handling the standard hardware devices of the F1 (screen,
keyboard, disk drive, parallel port, serial port, etc - see
Software Chapter following).

The BIOS also contains the generic Apricot applications
interface for communicating with the low level BIOS
hardware device driver routines; the extended Control
Device Driver, as implemented on the Apricot Portable. The
same standardised interface format is currently available on
the Apricot pc/xi range of products in a limited form. This
will be upgraded on the pc/xi range before the end of the
year to match the functionality of the Apricot F1 and
Portable products.

Producing a ROM-based BIOS for the F1 has the major
advantage over disk-based BIOS machines of not occupying
valuable code space in the system RAM which could be
otherwise utilised by applications software.

The F1 is fitted with two 16K x 8 bit ROMs to store the
ROM-based BIOS (i.e. 32 Kbytes of code space}. The board
containing the memory is also tracked to take 32K x 8 bit
ROMs to allow for future BIOS expansion.

7.7/8 System Overview

Disk Drives

The F 1 incorporates a single integral MicroFloppy Disk
Drive. The disk drive slot is located on the front facia of the
F1. A disk eject button is provided to ensure swift and easy
removal of disks.

The disk drive fitted within the F 1 is a Sony double-sided
MicroFloppy which uses 3.5 inch disks with a formatted
storage capacity of 720 Kbytes of data.

The double-sided MicroFloppy disks contain 80 tracks per

side, and are sofi sectored with 9 sectors per track and 512

bytes per sector. The software format is a logical derivation

of the IBM system 34 format for 8 inch disks and is common

to all the MicroFloppy based products in the Apricotrange
(i.e. both the 70 track single-sided and 80 track double-sided

disk drive based machines}.

BIOS support is provided within the F1 to allow single-sided
70 track MicroFloppy disks to be read from, written to and
formatted within the F1's 80 track double-sided drive.

Prior to transportation, a packing disk should be inserted
into the F 18’ disk drive as a safety measure. This is necessary
to avoid the possibility of excessive vibration causing
damage to the disk drive heads.

The F1 can also be easily upgraded into a Winchester based
machine, using the Apricot MSD (Mass Storage Device)
option. This consists of a pre-formatted 10 Mbyte
Winchester Disk Drive, a Winchester Controller Board and a
separate Power Supply Unit. The controller board fits into
the F 18" Expansion slot. Both the 10 Mbyte drive and Power
Supply are positioned externally to the F 1.

Support for the Winchester Disk Drive is also incorporated
within the standard F1 BIOS to aliow the user to instantly
have access to the extra storage space.

System Overview T1.1[9

Display Features

The design of the display circuitry of the Apricot F 1 is slightly
different from the usual microcomputer display architecture.

The first major difference is that there is no high level CRT
controller for generating display timing signals and display
address lines. These are instead implemented by a variety of
simple 74L.5 series components.

The second major difference is that there is no hardware
differentiation between text and graphics; everything is
pixel-based. i.e. A “dot” on the display screen is mapped by a
corresponding bit{s} in the display memory.

In other words, it does not matter whether the F1is

displaying text or graphics, the display circuitry treats them

both in an identical manner. This feature of the design makes
it easier for the programmer to mix text and graphics as
required by more and more integrated text and graphics
based applications and window orientated operating systems.

The display memory is part of the system RAM and occupies
40.5 Kbytes in the lower 64K. 40 Kbytes are allocated in the
system RAM to map out a pixel image of the display screen;
the other 512 bytes are used {o implement a series of 16-bit
addresses which form a pointer to map each display scan line.

The modes, resolutions and display features available to the
programmer provided by the display RAM are detailed in the
next few paragraphs. The resolutions described match the
resolutions of the current ACT colour and monochrome
monitors produced for the F1.

The F 1 can be configured to drive either a colour or
monochrome monitor with the programmer having the
choice of displaying either 200 or 256 lines.

The programmer also has one further option, either using an
80 column/640 pixel mode or a 40 column/320 pixel mode.

In the 640 pixel mode, the programmer can display up to 4
colours simultaneously (from a choice of 16) on a colour
monitor, or up to 4 ievels of greyscale if a monochrome
monitor is connected instead.

In the 320 pixel mode, the programmer can display up to 16
colours simultaneously on a colour monitor, or up to 8 levels
of greyscale if a monochrome monitor is connected instead.

7.7/10 System Overview

The 320 pixel/40 column mode is the mode which produces
a sensible display output on a standard TV. (The relatively
jow bandwidth of a TV compared with a video monitor does
not generally allow a sharply defined picture to be produced
in the 640 pixel modes).

Colour/greyscale selection is provided by a palette. Thisis a
small area of memory-mapped RAM which determines the
colour mix/grey levels at the display outputs.

The 200 line modes have been implemented primarily for
USA usage and other countries using 60 Hz mains supply
frequency. The two 200 line modes as described previously
are:

1. 640 x 200 bit-mapped graphics using any 4 colours {or
grey levels) from 16. L

2. 320 x 200 bit-mapped colour graphics using 16
colours (or 8 grey levels).

The higher resolution 256 line modes are for UK, European
and other countries using 50 Hz mains supply frequency and
are as follows:

1. 640 x 256 bit-mapped graphics using any four colours
(or grey levels) from 16.

2. 320 x 256 bit-mapped colour graphics using 16
colours {or 8 grey levels).

A default font of 128 characters (based within an 8 x 8 pixel
cell} is contained in the system ROM. This is designed to be
used with the 200 line resolution modes.

Each character is mapped by eight contiguous bytes in the
ROM. A second font of 256 characters (7 x 7 characters
based within an 8 x 8 pixel cell} is loaded into the system
RAM at boot-up. Support in the BIOS aiso allows other 8 x 8
user-defined fonts to be installed within the system RAM.
These can be easily accessed by simply modifying a fant
pointer.

A second defauit font of 256 characters (7 x 9 characters
based within an 8 x 10 pixel cell} is loaded into the system
RAM at boot-up. This is designed to be used with the 2566
line display modes. Each character is mapped by ten
contiguous bytes in RAM.

System Qverview T.7[/77

Support in the BIOS also aliows other 8 x 10 cell
user-defined fonts to be installed within the system RAM.
These characters can also be easily accessed by simply
modifying a font pointer. The 8 x 10 based fontis of a
greater resolution than the 8 x 8 based font for the 200 line
modes but is of an identical 256 character set. The basic
difference is in the construction of the characters, with lower
case letters generally having longer descenders.

To obtain a sensible and usable “text mode” on both the
colour display and monochrome display for existing text
based applications, the attribute support by the BIOS is only
allowed in “monochrome’” on the colour monitor {i.e. any
two colours from the possible sixteen) and any two grey
levels on a monochrome monitor.

Ali the standard character attributes are available to the
programmer in these two modes. These are produced by
direct bit maniputation of the character image in the display
RAM. Both normal and reverse video characters are
supported with any combination of the following attributes:

1. Underline.
2. Strikethrough.
3. Intensity (simulated by shadow printing).

BIOS support for character attribufes are not provided in the
multi-colour modes due to the inherent nature of the colour
display itself. {The same applies to the modes with more than
two grey levels on a monochrome monitor).

Since the only effect an attribute is used for is to differentiate
a character(s) from other characters, any of the standard
attributes can easily be represented by assigning attributes

to a different colour in a multi-colour mode (corresponding

to a different shade of grey on a monochrome monitor),
instead of the standard “monochrome” method.

7.71/12 System Overview

Keyhoard

The design of the F 1 Keyboard is slightly different from the
keyboards found on other business micros; being a full
function keyboard (82 keys) which is linked to the Systems
Unit by infra-red and also incorporates a real time clock
calendar (implemented in software).

The key layout is divided into a number of well defined
sections. These are, looking from left to right across the key
tops:

1. The QWERTY section which includes cursor, scroll and
general editing keys. This is an identical layout to the
one found on the Apricot pc/xi range of computers.

2. A calculator keypad.

3. 10 general/fixed fuction keys.

These keys are square in design and feature a slightly
sculptured keytop to ensure accurate user action.

Four machine function keys are located above the keyswitch
array and are of an entirely different design. They are slightly
recessed to avoid inadverient user action.

The Keyboard is designed to be used with its spring-loaded
feet extended. Buttons for releasing the feet from their
storage position are provided on the side of the Keyboard.

The major advantage of using the infra-red link for
transmission of keyboard data is that the user is free to site
his Keyboard in the general vicinity of the Systems Unit but
not necessarily directly in front of it. (Maximum practical
distance for using the infra-red Keyboard is specified at up to
2 metres away from the Systems Unit).

To avoid the possibility of interference in multiple machine
environments, a “light-pipe” is available for linking the
Keyboard and Systems Unit together. This is a section of
fibre optic cable which directs the infra-red keyboard
transmissions to the receiver circuits of the parent Systems
Unit.

To improve system reliability and ensure that the BIOS does
not misinterpret data transmitted from the Keyboard, the
keycode data is encoded using Hamming codes prior to
transmission. This is an error correction/detection encoding
technique which allows the BIOS to correct and detect
errors in the transmitted key data.

System Qverview 1.7/713

The keycodes are transmitted in serial packets of data, each
packet consisting of 32 bits. The information contained in
the transmission packet signifies the X-Y co-ordinate of the
pressed key and the key status. The key status identifies
whether the key pressed is:

1. Shifted (SHIFT key + key pressed).

2. A control key sequence (CONTROL + key pressed).

3. In Auto-repeat mode {key was the last key to be
transmitted and is being held down).

The use of keycodes rather than using the ASCII equivalent
to represent the key{s) makes it particularly easy for the
programmer to redefine the keycode. Support in the BIOS is
provided to allow this to be done by simply loading a new

keyboard table into RAM and modifying a pointer to pointto

it. A default keyboard table is stored in ROM.

Not all keys can be reassigned by the applications
programmer. Certain of the keys are designed to perform
specific functions and are therefore masked off by the BIOS
and processed in an entirely different manner. These include
the TIME/DATE key and the four button keys RESET,
REPEAT RATE, SET TIME and KB LOCK.

The TIME/DATE key causes the time and date information
generated by the real time clock/calendar software routines
within the Keyboard to be transmitted to the Systems Unit.

This is used by the ROM BIOS to update the BIOS internal
clock, {as used by MS-DOS for its time and date stamp}. The
time and date data is supplied to the Systems Unitin 15
separate contiguous data packets following the TIME/DATE
keycode packet.

The key also serves another function at machine switch on,
where it initiates the boot loading sequence, if a bootable
disk is within the disk drive.

The function of the RESET key is self-explanatory, being the
systemn reset key. |t generates a hardware reset in the
Systems Unit and must be held down for approximately one
second before if functions. The delay is implemented to
prevent the user accidentally resetting the system.

The REPEAT RATE key is a toggle switch which allows the
user to set the auto-repeat rate of the keys to either one of
two values; a fast or a slow rate. {The repeat rate is the rate
the keyboard transmits the keycode to the Systems Unit,
when a key is held down).

7.7/74 System Overview

The SET TIME key is used to adjust the real time
clock/calendar software within the keyboard. It can be
actioned by the user anytime (before or after the system
boot). Pressing the key displays a prompt on the 25th [ine of
the display in the following format:

HH:MM DD/MM/YY

The user resets the time and date within the keyboard by
typing in numerical values only using the numeric keypad
(e.g. typing 1000011285 sets the keyboard clock to 10 am,
1st Dec 1985).

The key does not send the updated time and date
information to the ROM BIOS. This function is actioned by
the TIME/DATE key as described above.

The KB LOCK key is a toggle key which enables the userto
deactivate the effect of all keys apart from RESET, SET

TIME, TIME/DATE and KB LOCK itself, {i.e. it locks out the
keyboard). Pressing the key again informs the BIOS to

restore action to all the keys.

Another special key function on the Keyboard is the CALC
key in the shifted mode (SHIFT key + F4} which can be
redefined by applications software if required, but should
generally not be reconfigured. The key sequence can be used
prior to boot and can be also made available during
applications or at the operating system level, to initiate the
BI1OS calculator software.

The calculator display appears on the 25th line of the display
screen. The calculator keys are formed by:

1. The numeric keypad {1 to 9, the mathematical function
keys, decimal point and ENTER]).

2. The CLEAR key.

3. The function keys, STORE, RECALL, M+, M-,

4. The CALC key.

After boot an extra calculator key is available to the user.
This is the function key, SEND (obtained by CONTROL +
ib}. It enables the user to send the results or operands of a
calculation to the cursor position on the screen.

The Keyboard is powered by four AA batteries, which are
located behind a panel on the base of the Unit. These provide
enough power to keep the Keyboard operational (under
normal everyday usage} for approximately 6 months.

System Querview 1.7]15

To cater for custom keyboard layouts (Dvorak, the French
style AZERTY format, or any other foreign language layout),
the key tops have been designed to be easily removed and

repositioned. Applying slight leverage underneath a keytop
releases it from its normal location.

Because the majority of the keyboard is software
configurable, the programmer can reassign the keyboard to

match a different layout simply by installing a new keyboard
table, as described previously.

7.71/16 Svstem Overview

Printer Support

The F1 has two ports available for connecting printers; a
Centronics port for parallel printers and an RS232C port
which can be used for serial printers.

The Centronics port connections support two of the
common handshake signals normally required/supplied on
the majority of parallel interface printers:

1. Data Strobe
2. Busy

A description of the facilities provided by the R§232C port
for serial printers and various communications device is
detailed below.

System Qverview 1.7/717

Communications

A sophisticated RS232C communications port is provided
as standard equipment for general purpose
communications (via acoustic couplers, modems, direct
connection to other micros, etc). It can also be configured
for driving various printing devices (serial line printers,
plotters, typesetters, etc).

The port can be programmed to operate in both
asynchronous and synchronous modes, with the
programmer having independent control over transmit
and receive baud rates. These can be either set to the
same value or set to operate with different rates for
transmit and receive as required.

The baud rates can be selected under software controito -

be driven by an internal timer circuit at any of the more
commonly used values (from O to 9.6 Kbaud) for general
purpose communications.

Alternatively, a software switch enables the baud rates to
be set by external equipment instead of the internal timer.

The programmer is able to choose from a variety of
synchronous modes. These include the bit oriented modes
HDLC and SDLC, and the byte oriented modes, Monosync
and Bisync.

The control and timing signals available at the RS322
output (formed by a standard 25-pin D-type female
connector) are as follows:

1. RTS (Request To Send)

2. CTS (Clear To Send)

3. DSR (Data Set Ready)

4. DTR (Data Terminal Ready)
5. DCD {Data Carrier Detect)
6. TXCK {Transmit Clock)

7. RxCK {Receive Clock)

Two supply outputs (+ 12V/— 12V) are also available on the
connector. These are primarily for use by the Apricot Point 7
network.

71.7/78 System Overview

Other communications facilities available to the F1 are
provided by optional Expansion Boards. The F 1 is hardware
compatible with the Apricot mtegral Modem and the Apricot
LAN card.

The applications-driven Apricot integral Modem provides the
user with the facility to communicate over the telephone
network via the F 1.

The Modem is a frequency shift keyed (FSK} Modem
conforming to CCITT V21 (300 bps full duplex) and CCITT
V23 (1200/75 bps full duplex) standards. It has autoanswer
capability conforming to CCITT V25 standard, and also
incorporates an integral loop disconnect (pulse} autodialler.

Typical applications for the Apricot F1 complete with
Modem are:

1. Emulation of various computer terminals which are
used for communicating to mainframes and
minicomputers.

2. Access public and private databases.

3. Transfer files and data between the F 1 and any other
micro or computer with asynchronous modem facilities
available.

The Apricot LAN card with the appropriate network
software allows the F1 to be linked into the Apricot Point 32
network and function as a user network station. This
provides the F 1 with the facility to access all the allocated
resources (printers, file space, etc) provided by this powerful
local area network.

System Overview 1.1/19

Expansion

A single Expansion Slot has been designed into the F1 to
cater for any single optional expansion cards the user may
reguire. A plastic expansion plate is also located on the rear
panel, This can easily be removed to allow external
equipment to be connected to the expansion board with a
minimum amount of modification to the machine.

A high degree of compatibilty has been maintained in the
design of the Expansion Slot with the other products within
the Apricot pc/xi range of computers. This is such that all
existing ACT Expansion boards (Winchester Controller,
Maodem, RAM cards, etc) can be used within the F 1
Expansion Slot without any modification to the Expansion
Board hardware.

The philosophy for using multiple Expansion boards is S

different to the one originally adopted on the Apricot pc/xi
range of machines.

The user has the option to link the F 1 expansion bus
connector {on the side of the Systems Unit) to a separately
powered Expansion Unit fitted with multiple Expansion
Slots. This user is then able to expand the facilities of the F 1
using the special features of the Expansion Unit.

The Expansion Unit is responsible for re-powering the
Expansion bus to meet the drive capability of multiple
Expansion Slots and also for providing a sensible interrupt
structure.

1.7/20 System Overview

Specification

Processor: Intel 8086 running at 4.67 MHz.

Memory: 256 Kbyte System RAM.
32 Kbyte of Boot ROM (expandable to
64 Kbyte).
Disk: Double-sided MicroFloppy disk drive capable

of being used with either 80 track double-sided
(720 Kbytes) or 70 track single-sided
MicroFloppy disks (315 Kbytes).

Printer
Support: Centronics port and RS232C port.

Commes. Port: RS5232C port capable of being driven in either
asynchronous or synchronous modes {Bisync,
Monosync, HDLC or SDLC) with selectable
baud rates (internally 50 to 9.6 Kbaud; or
externally set by data communications
equipment).

Expansion: One Apricot pc/xi compatible expansion
slot + one Expansion bus connector for
linking in an optional Expansion Unit.

Keyboard: Full function “soft” keyboard incorporating
QWERTY layout, calculator keypad, four
rmachine specific function keys, and a bank
of ten “fixed/general” function keys. Linked to
the Systems Unit by infra-red. (Optional
fight-pipe connection for multi-machine
environments).

Sound: Programmable tone/noise generator +
integral loudspeaker.

System Overview 1.1/21

Display
Features: Logic to drive either a colour monitor or a
monochrome display in the following modes:

1) 640 x 200 resolution bit-mapped
graphics using any 4 colours from 16
(c.f. 4 grey levels for the monochrome
monitor).

2) 640 x 256 resolution bit-mapped
graphics using any 4 colours from 16
(c.f. 4 grey levels for the monochrome
monitor).

3} 320 x 200 resolution bit-mapped
graphics using up to 16 colours {(c.f. up
to 16 grey levels for the monochrome
monitor}).

graphics using up to 16 colours {c.f. up
to 16 grey levels for the monochrome
monitor).

Default ROM based character font of 128
characters. Alphanumeric characters based
within a 7 x 7 pixel matrix and contained in an
8 x 8 cell for 200 line modes. Default 8 x 8
RAM based character font of 256 characters
as above, for 200 line modes.

Default RAM based character font of 256
characters. Alphanumeric characters based
within a 7 x 9 pixel matrix and contained in an
8 x 10 cell for 256 line modes.

"Soft” font capability.

Software character attributes in
"monochrome” modes:

1} Reverse
2} Underline
3) Strikethrough
4) Intensity
Display
Qutputs: 1. 9-pin D-type Male - Qutput for either a

colour or a monochrome monitor,

2. Phono jack socket - Output for a
composite monochrome monitor.

3. b-pin Molex {located internaily) - Output
for a standard TV via optional modulator.

1.7/22 System QOverview

Dimensions: Systems Unit -

Length: 16.5 inches (420 mm)
Width: 8.7 inches {221 mm)
Height: 6.3 inches (160 mm)

Keyboard -

Length: 17.7 inches (450 mm)
Width: 6.6 inches (167 mm)
Height: 1.1 inches (28.5 mm)

Weight: Systems Unit - 9.6 |bs (4.35 kg)
Keyboard -29I1bs{1.32kg)

Power
-~ Supply: Either 240V or 110V operation
(selected by aninternallink).
Current

consumption:

Approximately 600mA - 240V
Approximately 1.2A - 110V

Approvals: UL- 114

(pending) CSA-C22.2 (No. 154 1983)
BEAB - BS415
FCC - Class B, Part 15, Subpart J

System Overview 7.1/23

Contents

Introduction
Details

Applications Interface
Operating Systems Interface
MS-DOS

ROM BIOS

Software Overview 1.2[1

Introduction

The control software for the F1 consists of three basic
modules; a standard proprietary Disk Operating System
(normally MS-DOS) and two BIOS modules; one resident in
ROM, the other loaded into RAM at the same time as the
operating system. {(The BIOS is an acronym for Basic Input
Output System).

The ROM based BIOS (hence termed ROM BIOS) consists of
a number of basic hardware device drivers (screen,
keyboard, disk, etc). These are responsible for controlling all
the standard hardware devices within the computer (and
also some of the Apricot optional add-on devices, e.g. the
Apricot 10 Mbyte MSD).

The drivers in the ROM BIOS are not the only software
device drivers supplied with the machine; three other
loadable device drivers are also provided as standard
software on the release disks, together with a graphics
software interface (GSX).

The first loadable device driver is an optional user facility for
implementing a RAM disk (RAMDISK.SYS). The user is able
to allocate 64K portions of the systern RAM to simulate a
floppy disk {i.e. a RAM Disk) to greatly enhance system
performance.

The format of the entry in the CONFIG.SYS file for this
installable device driver requires one argument as detailed
below:

DEVICE=RAMDISK.SYS /n
where n represents the number of 64K portions allocated.

Note: A space must be inserted between the RAMDISK.SYS
and the backslash.

The system software views the RAM Disk as an extra disk
drive and allocates the next free drive designation to it. {i.e.
On a single drive system, this would be drive B).

Generally, implementation of the RAM Disk is only feasible
on systems employing more than 256 Kbytes of system
RAM.

1.2/2 Software Overview

The second loadable device driver is the modem driver
{(MODEMAPR.SYS). This is also an optional loadable device
driver. It provides the programmer with the necessary tools
to integrate the communication facilities of the optional ACT
integral modem into an application.

The third optional loadable device driver is the Mouse device
driver (MOUSE.SYS). This is linked into the system to handle
all data transmissions from either the ACT infra-red mouse or
the MicroSoft serial mouse. It forms an integral part of the
graphics software and is also available for use with other
applications.

The fourth device driver is the GSX graphics driver. it differs
from the other device drivers described above, since it does
need to be installed at boot-up. {All the other drivers
described above use the MS-DOS facility for installing
loadable device drivers by appending an entry to the
CONFIG.SYS file). The GSX graphics interface incorporates
its own command file (GRAPHICS EXE) for installing the
software.

The function of the GSX graphics interface is to provide the
programmer with a machine independent graphics interface.

Software Overview T7.2/3

Applications Interface

On nearly all microcomputers, the applications programmer

has a number of choices for integrating his software into the
machine’s environment. He can do this in any combination of
three possible ways as described below:

1. Using the facilities of MS-DQS.

2. Linking into either the ROM BIOS or other device driver
routines.

3. Directly accessing the hardware.

MS-DOS

MS-DOS provides the programmer with a high level machine
independent interface for applications programs. It allows
programs to run on dissimilar machines (e.g. Apricots, IBM
PCs, ete), providing no other machine specific features are
accessed.

It also permits the programmer o create installable device
drivers at the DOS interface level in a consistent manner.
These drivers ¢an either define a new device type to be used
on an Apricot (e.g. the generic Modem driver, version 2.0 of
MODEMAPR.SYS), or replace an existing driver (e.g.
keyboard, screen driver, etc).

ROM BIOS

The way the applications programmer links into the Apricot
ROM BIOS is via a simple interface, the Apricot Control
Device. This provides a standardised method of accessing
the BIOS routines and is adopted in the same generic format
on all Apricot computers. (It is currently supplied in limited
form on the pc/xi range of machines, but is soon to be
upgraded into the same specification as found on the F1 and
Portable).

The Control Device allows the programmer to control basic
low-level machine functions without having to resort to
accessing the hardware.

1.2/4 Software Qverview

If a programmier uses this interface for all features and
facilities not available through MS-DQOS, it will allow him to
produce “portable” applications which will run on all
members within the Apricot range of computers {(Apricot
pc/xis, F1s and Portables).

The Control Device thus provides the programmer with a [ow
level machine independent interface to application

programs, which is compatible across the range of Apricot
microcomputers.

The purpose of the Control Device is to hide the differences
in the hardware between various models within the Apricot
family. This does not mean that the application writer cannot
use the special features which are implemented on one
machine but are not available on another.

Inherent in the configuration parameters is data to enable
the application programmer to identify which Apricot micro
his application software is being run on. The writer can
modify his software to use any special feature by first
determining the machine and then tailoring the routines
accordingly.

Hardware

Direct accesses to the hardware will not produce the
desirable goal of machine independent code for the
applications programmer.

The hardware of the Apricot micros is substantially diverse
and port addressing significantly different. Code which
writes directly to the hardware will require translation and
rewrites for each product within the Apricot range of
computers. This will of course make the application totally
machine specific.

One area where the BIOS does actually mask out the
differences in the hardware is in interrupt support for
expansion cards. Even though the interrupt lines on the
expansion bus are all wired to the same pins on the
expansion board connector throughout the whole range of
Apricots, the associated interrupt pointers differ from
machine to machine.

Software Overview 1.2/5

To make it easier for the third party hardware vendor to
produce compatible boards for the whole range, a software
interrupt has been reserved which allows the programmer to
set up his interrupt handler vectors and relate them to the
physical interrupt line rather than the hardware interrupt
pointer..

It will not always be possible for all application programmers
to totally ignore the hardware and only use a combination of
MS-DOS and the Controf Device. Accessing the hardware
will be necessary if certain features the programmer wishes
to use are not available through MS-DOS or the BIOS (e.g.
synchronous communications support via the RS232 port).

Direct accessing to the hardware can cause a few problems,
generally associated with contention arising between the
BIOS and the application when both are accessing hardware
registers which are write-only. {The application and the BIOS
would not normally know what has been set up by the
other’s software, and therefore could overwrite each other’s
code). This contention invariably results in the machine
crashing.

To alieviate this potential problem, the BIOS maintains copies
of certain write-only hardware registers which may be of use
to the application programmer. These are stored in RAM and
accesible to both the BIOS and the application.

The BIOS only changes bits within the hardware registers
which are of interest to the BIOS and always makes a copy of
any changes in the copy register. In order to avoid
contention, the application should always adopt the same
procedure.

Graphics

One of the current growth areas in applications software is in
the use of graphics displays. Again, as with standard
machine functions, one of the most desirable goal for an
applications writer is to be able to produce graphics software
that is portable across a whole range of machines.

In order to do this, the applications writer requires a
consistent software interface for graphics functions. This is
provided by the Digital Research module GDOS which is part
of the Apricot implementation of GSX.

71.2/6 Software Overview

The GDOS is a machine independent applications interface
o graphics functions and is implemented on all Apricot
Micros.

It provides the programmer with a standard set of primitive
graphics operations enabling him, by using a simple calling
procedure to:

1. Draw lines, arcs, pie slices, bars and circles of various
styles, and colours.

. Place text on the screen.

. Plot points.

. Fill polygon areas in various styles and colours.

. Program the colour palette to alter the colours available

on a colour monitor.

. Interpret user input from the keyboard and mouse.

Configure the machine to match the desired resolution

and colour mode, (e.g. 4 colour graphics on a colour

monitor or lower

resolution 16 colour graphics).

Noy o hwi

Examples of programs which run under GSX are the utility
programs contained within Activity, ACT Sketch and ACT
Diary.

The GSX system is based on two modules, the GDOS
module from Digital Research and the G10S (Graphics Input
Output System), written by ACT,

The GIOS is the low level hardware interface which forms
the bridge between the GDOS and the display hardware.
This differs from machine to machine {as does the display
hardware} and is not accessible to the programmer.

Different versions of the GIOS have been provided on the
Portable to use the various display capabilities. GIOSs have
been created to support a colour monitor in the following
graphics configurations:

1. 640 x 200 line graphics using 4 colours.
2. 640 x 256 line graphics using 4 colours.
3. 320 x 200 line graphics using 16 colours.
4. 320 x 256 line graphics using 16 colours.

The programmer selects the appropriate GIOS to match his
requirements by using a command available through GDOS.

Software Qverview 1.2]7

Operating Systems Interface

MS-DOS does not make requests for services by
communicating directly with the ROM BIOS. All requests are
directed via the RAM BIOS to the Apricot Control Device.
The RAM BIOS handles all communications between
MS-DOS and the Control Device. It interprets:

1. MS-DOS function requests and translates them into
calls to the generic Control Device.

2. Status messages returned from the Control Device and
translates them into MS-DOS format.

Using a RAM based BIOS for this translation makes it
particularly easy for other operating systems to use the
routines within the ROM BIOS.

The only major function a different operating system
manufacturer has to do to link into the machine is, to write a
different RAM BIQOS which performs the same function as
the MS-DOS version and load it in together with his
operating system at boot-up. This cuts out the time
consuming exercise for the operating system manufacturer
of having to create his own set of device drivers.

All the necessary details to allow other operating systems to
produce generic boot disks {as supplied by ACT for
MS-DOS) so that they are compatible across the different
products in the range of Apricot microcomputers {e.g.
Portables, pcs and xis upgraded with the ROM BIOS) are
included in later chapters.

1.2/8 Software Overview

MS-DOS

The features of Microsoft’s MS-DOS are widely known,
currently being the most widely used 16-bit microcomputer
operating system.

The initial release of software supplied with the Apricot
Portable is version 2.1 1. This will inevitably be upgraded to
MS-DOS 3.05/3.06 in the near future, which features
“hooks” for linking into the MIS-NET networking software.
On its own without the MS-NET module, DOS 3.06 is
virtually identical in functionality to MS-DOS 2.11.

MS-DOS 2.11 is an extension of the widely used MS-DOS
2.0 which hailed the introduction of the enhanced aperating
system features of installable device drivers and
tree-structured directory support. The main difference
between these two versions is that DOS 2.11 provides
support for international languages and uses 8-bit character
codes in files instead of 7-bit.

Different versions of DOS 2.11 are available complete with
MS-DOS utilities, which support foreign languages such as
French and German.

Software Overview 1.2/9

ROM BIOS

The ROM BIOS has been discussed in detail in the
Applications interface section above with reference to the
function of the Control Device. Instead of repeating this
information, a brief summary of its salient points are detailed
below. This is then followed by an introduction to the
standard device drivers included within the ROM BIOS.

Besides consisting of the series of basic hardware device
drivers, the ROM BIOS also contains the generic applications
interface, termed the Apricot Control Device. This is
implemented on all Apricot machines, (currently as a limited
sub-set on the Apricot pc and xi machines but these
machines are soon to be upgraded to the same interface
specification as the F1 and Portable).

The routines in the ROM BIOS are accessible to the
application programmer via the control device interface, It
provides the application programmer with an extremely easy
and efficient way to access various low level routines, not
normally available using calls to MS-DOS alone, thus
allowing the programmer greater control of machine
functions.

The programmer can access the Control Device in one of
two ways.

The first method is designed to suit assembly language
programmers and is similar to a MS-DOS function request.
The programmer loads the 8086 registers with:

1. Information to specify the device to be accessed (e.g.
Keyboard driver).

2. A command (e.g. initialise)

3. Data as required.

A call is then made to the Control Device by generating the
interrupt FCH.

The second method is designed to support higher level
languages such as BASIC. The programmer accesses the
Control Device by assembling a series of parameters
(specifying the device, command and data as required} and
passing them onto the stack by performing a far call to
0600H.

1.2]10 Software Overview

Drivers

The ROM BIOS contains the following standard device
drivers, listed below. The actual function of each driver is
indicated by their titles.

. Keyboard Driver

. Screen Driver

. Disk Driver

. Parallel Port Driver
. R5232 Driver

. Clock Driver

. Winchester Driver

NOPOT R WA

Keyboard Driver

This routine receives all data transmitted to the machine via
the infra-red input. This includes keyboard and mouse data.

Decoded mouse data is not handled by the keyboard driver.
it is immediately passed onto another routine via an
interrupt. The mouse data handling routine may be the
loadable mouse device driver, or any other routine installed
by the application writer.

Keyboard data is always initially analysed for any special key
depressions such as TIME/DATE, KB LOCK, SET TIME,
REPEAT RATE. These keys are filtered off and sent off to the
appropriate ROM BIOS routine to action a specific user
function. They are therefore not accessible to the
applications writer.

All other keys are converted to an Apricot compatible
keycode (termed a downcode), which is normally used to
select an entry from a keyboard table. The selected entry is
then usually passed to MS-DOS via an 80 byte queue.

The keyboard table occupies a minimum of 1K of memory
space and can be either the default keyboard table in ROM
or any other keyboard table loaded into RAM by the
programmer. The use of a software keyboard table allows
the programmer 10 translate a user key depression to any
code or sequence of codes as required.

A simple mechanism enables the programmer to specify the
keyboard table in use. This is achieved by modifying a pointer
(the active key table pointer) to point to the start of the
desired table.

Software Overview 1.2/717

A KEYEDIT utility is supplied with the system software to
allow the user/programmer to either create new keyboard
tables or modify an existing one.

The format of the keyboard table usedonthe F1is
compatible with the format of the key tables used on all
other Apricot computers (Portables, pcs, xis, etc). It consists
of four sections.

The first three sections contain the entries for keys in normal
mode {single keystroke}, shifted mode {(key + SHIFT key),
control mode (key + CONTROL key). The last section
defines an area of string keys. This section of the table is
accessed by programming the entries in the three other
sections to act as a pointer into the string area.

Facilities are provided within the Control device interface to
aiter the way the driver handles the keycodes. The
programmer has various options available, for manipulating
keycode data such as:

1. Handling downcodes directly, missing out the
translation process provided by the keyboard table.

2. Analysing and extracting keycodes from the 80 byte
gueue, and processing the data as required.

3. Placing data into the queue.

4. Checking driver status, sounding the bell, etc.

Interrupt support is also available to enable the application
programmer to vector off keycode data to his own routines,
as required.

Screen Driver

The features of the Screen Driver provide the applications
programmer with comprehensive of the available display
options (colour monitor, monochrome monitor, standard
domestic TV, etc).

The basis for controlling the displays is via ESCape sequence
support and calls to the Control Device.

7.2]72 Sofiware Overview

The screen modes available through the driver are as
follows:

1. Standard 80 column by 25 row character based display
on either the colour or monochrome monitor (using any
two colours from 16 on the colour display or any two
grey levels from 16 on the monochrome monitor). The
following attributes are also available in normal or
reverse video:

Underline
Strikethrough
Intensity

This is termed the Apricot compatible mode, since it is
available in the same format on all current machines.

2. 80 column by 25 row character based display using any
four colours/grey levels from 16. Standard attributes
not supported. Attributes generated by varying the
foreground and background colour/grey level of the
characters.

3. 40 column by 25 row character based display using any
four colours/grey levels from 16. Standard attributes
not supported. Attributes generated by varying the
foreground and background colour/grey level of the
characters. Suitable for driving a standard domestic TV.

The displays can be driven in one of two different scan line
resolutions; 200 or 256.

These are designed to match the display resolutions available
on an ACT colour monitor when it is connected to either of
the two mains supply input frequencies used in the majority
of countries throughout the world.

The 200 line mode is primarily for use in the USA and other
countries using 80 Hz mains supply lines. The 256 line mode
is for use in countries using 50 Hz mains supply input (UK,
European, efc}.

Two fonts with 2586 identical characters per font are
normally downloaded into the system RAM at boot-up.

One of the fonts is based upon an 8 x 8 character cell and is
available for use on display monitors running in 200 line
mode. The second font is based upon an 8 x 10 character
cell and is for use on display monitors set for the 256 line
mode. The screen driver performs automatic selection of the
correct font according to the line resolution mode selected
by the application programmer.

Software Overview T.2/713

A FONTEDIT utility is supplied with the system software to
allow the user/programmer to either create new character
fonts or modify an existing one.

The programmer can also dynamically change from font to
font during run-time (if required). This is achieved by simply
modifying a pair of font pointers, which specify the start of
the currently active font.

A comprehensive set of ESCape sequences are inherent
within the screen driver including a sub-set of the ANSI
standards. These provide the programmer with:

1. Control of screen character attributes such as intensity,

underline, etc in the Apricot compatible mode.

2. Colour/grey level selection. This includes; background
and foreground screen colour/grey level in Apricot
compatible mode; background screen colour/grey level
plus background and foreground colours/grey levels on
a per character basis in the four colour/grey level
modes; independent programming of the palette for
other application usage.

. Cursor control routines.

. Word Processing primitives, such as insert line, Delete

line, etc.

Facilities for changing the screen environment, e.g. to

80 columns, 4 colours etc.

. Windowing functions.

. Support for hard copy.

NO O bW

To make it easy for the programmer to build character
images on the bit-mapped display, the driver supports a
virtual screen image located in RAM.

Each character on the virtual screen is represented by a
single word. The lower byte is the ASCl character code; the
upper byte either signifies the character attributes orif a
multi-colour/grey level mode, the foreground and
background colours for the character.

The programmer accesses the virtual screen via the control
device interface. He can use it to build up character images
in the background, and then command the driver to repaint
the image on the bit-mapped display from the virtual screen.

Other support features provided by the control device allow
the programmer to update individual characters on the
screen with the appropriate attribute/colour selection as
required.

1.2/ 14 Software Overview

Disk Driver

This driver has been primarily designed to provide the
necessary support for MS-DOS disk operations to the floppy
disk drive. The only entry point to the driver is via the Control
Device interface.

The driver is configured to support both 70 track
single-sided and 80 track double-sided disks, enabling
multiple sector reads and writes to either type. It also
provides calls for linking in a formatting program.

The applications writer can use the control device calls for
checking disk status, and if so desired can perform read and
writes to absolute disk sectors instead of using the MS-DOS
file structure.

Paralle!l Port Driver

The parallel port driver is used to drive the Portable's
Centronics port, thus providing applications support for
sending data to parallel printers and plotters. The only
method provided for accessing the driver, is via the Control
Device interface.

Facilities provided by the Control Device allow the

programmer to:

1. Examine/control the state of the Centronics interface
handshaking signals.

2. Send characters to the driver's print buffer {the length of
which is 2K bytes).

3. Clear the print buffer of characters, test for space in the
buffer, etc.

It also provides a call to re-route characters to a serial printer
via the R§232 port.

RS232 Driver

This driver provides various support features to allow the
programmer to drive the RS232 port asynchronously. The
programmer’s method of accessing these routines is via the
Control Device interface.

Software Overview 1.2/15

The following features are available through the Control
device interface for supporting asynchronous
communications:

1. Full duplex operation with variable length buffering

available on both the transmit and receive paths {1 to

512 bytes).

Control of most of the commonly used transmit and

receive baud rates.

. Selectable parity and stop bits.

. Control and status monitoring of the modem control

lines; DTR, CTS, RTS. DSR and DCD.

. XON/XOFF flow control.

. Primitive teletype functions (e.g. automatic transfer of
nulls after carriage return, etc}.

QOther features provided by the driver are:

oo AW N

1. Automatic vectoring of receive data to an installed
mouse device driver to enable handling of data from a
serial mouse.

2. Interrupt support to allow the hardware {Z80 S10) to
be driven directly by an application without having to
resort to writing and reading to port addresses.

Clock Driver

This driver is driven by a hardware timer interrupt which is
generated on a regular 20 ms cycle. The routine is
responsible for maintaining the clock/calendar for the time
and date stamp used by MS-DOS. This is updated when the
user presses the TIME/DATE key.

It also handles various timing routines as required by the
floppy disk drive, winchester, cursor control routines, printer
routines, etc.

The application programmer can use the regular 20 ms cycle
to implement his own timer related functions. He can link
into the cycle by simply installing his own routines at a
location specified by a software interrupt.

1.2]16 Software Overview

Winchester Driver

This driver is provided to support add-on Winchester devices
such as the Apricot MSD. As with the floppy disk driver, the
main function of the driver is to provide the interface
between MS-DOS and the disk drive.

The driver enables up to two Winchester drives to be
supported in a single system. The Winchester drives can be
of different capacities {e.g. a 5 Mbyte and a 10 Mbyte}.

The applications writer can use the control device calls for
checking disk status, and if so desired can perform read and
writes to absolute disk sectors instead of using the MS-DOS

file structure.

There are no routines in the driver for linking in formatting
programs.

Software Qverview 1.2/17

Contents

Introduction
Details

Display Options

RAM Expansion Boards
Modem Board

LAN Board

Mouse

Apricot MSD
Expansion Unit

Opticns 1.3/7

swm§

Introductio

The basic configuration of the F1 can be altered by the
addition of various options to reflect the differing
requirements of the user. These can be broken down into the
following categories.

1. Display Options.

2. RAM Expansion Boards.
3. Modem Board.

4. LAN Board.

5. Mouse.

6. Apricot MSD.

7. Expansion Unit

7.3/2 Options

letails

Display Options

These can be further broken down into a number of different
types, some of which are available from ACT and others
which are available from independent suppliers. The display
options available from ACT are:

1. @ inch F1 Monochrome Monitor.
2. 12 inch F1 Monochrome Monitor.
3. 10 inch 1 Colour Monitor.

4. TV modulator,

Alternatively, the F1 can be used with a standard black and
white composite monitor or any other standard IRGB colour
monitor set up to match the required line resolution.

The monochrome options are supplied as a monochrome
montitor plus a cable which includes an in-line transformer.
This plugs into the two pin socket on the back of the F1 to
provide the supply for the monitor. The monitor plugs into
the 9-pin D-type connector on the back of the F1. It provides
the F 1 with the facility to display text and graphics using a
grey scale.

The colour monitor option also plugs into the 9-way D-type
connector located on the back of the machine. It provides
the F 1 with the facility for displaying text and graphics in
colour.

The colour monitor option is a 16-colour IRGB monitor,
which is powered directly from the mains supply.

Both the colour and monochrome monitor can be configured
to run in either 640 x 200 line display made {(normally when

using 60Hz mains supply input frequency) or 640 x 256 line
display mode {50 Hz mains supply frequency).

Support in the BIOS allows the applications programmer to
display text-based applications in either monochrome {any
two colours from 16 on the colour display, any two grey
levels on the monochrome monitor}, or using a 4 colour
mode (any four colours from 16 or any four grey levels).

Options

7.3/3

Graphics support provided by the GSX interface allows the
programmer to drive the monitor in either 4 colour mode
{using 4 colours/grey levels from 16} or 16 colour mode
with reduced resolution {using the full range of colours/grey
levels on the monitor).

The F1 can also be connected to a standard domestic
television. This requires the optional TV modulator.

The modulator is fitted internally within the F1 and
monopolises the Expansion Slot. Connections to the TV are
via a standard co-axial cable. TV support in the BiOS is
provided by the 40 column modes. Supportin GSX is
provided by the 320 pixel resolution modes.

1.3/4 Options

RAM Expansion Boards

The RAM Expansion Boards are single board Expansion
cards. The boards are available in three different memory
sizes, 128 Kbyte, 256 Kbyte and 512 Kbyte. In the F1, the
appropriate board can be installed 10 increase the standard
256 Kbytes to any one of the following values:

1. 384 Kbytes.
2. 512 Kbytes.
3. 768 kbytes.

Options 1.3/6

Modem Board

The Apricot Modem is an integrated hardware and software
communications package, which provides the F 1 with the
facility to transmit and receive data via the Public Switched
Telephone Network {PSTN).

The Modem communications package is provided as follows:

1. The Modem hardware, which fits internally within the
F1 utilising the Expansion Slot.

2. The Modem device driver software which is supplied as
a loadable device driver which is part of the release
software.

The Modem is driven via an applications software package
interacting with the Modem device driver. This allows the
programmer to define the particular service or use, the
Apricot F1/integral Modem combination is to be configured
for.

Both the hardware and the software device driver have been
specifically designed fo allow the Apricot/Modem
combination to operate as a multi-purpose communicating
microcomputer with a vast and diverse range of differing
capaabilities, as defined by an applications program.

Typical applications for which the Apricot complete with
Modem can be employed are detailed below:

1. Emulation of various computer terminals which are
used for communicating to mainframes and
minicomputers.

2. Act as an interface to British Telecom’s viewdata
services. This includes the public viewdata service
Prestel, or any of the private viewdata services which
are protocol compatible with Prestel. Details of Prestel
are widely known. The less known service private
viewdata, is operated by large organisations for
dissemination of information from a private data base
to dealers and clients. e.g. British Leyland’s dealer
information service.

71.3/6 Options

3. General purpose networking for transferring files and
data between the Apricot and any other computer with
asynchronous modem facilities available.
Communications are not restricted in terms of distance.
Both long distances up to thousands of miles (via the
public telephone network), or even short distances
within the confines of a building {limited local area
network capability via a PABX), can be easily
accommodated.

4. Function as a repertory dialler. {i.e. A telephone
management system which provides automatic dialling
of telephone numbers, selected from an internal
directory for either voice or data connection).

The F1/Modem combination is not limited in its connection

to a telephone network; it can be connected directly to the

network or indirectly through the majority of PABXs with
loop disconnect dialling facilities.

Connecting the F1 fitted with the Modem into the telephone
system is a simple operation. The Modem is fitted with a
“flying lead” terminated with a series 800 plug. The F1 can
thus be easily connected anywhere on the PSTN by way of a
standard series 600 socket.

Options

71.3/7

LAN Board

The Apricot LAN Board is an Expansion Board, which allows
the F1 to be linked into the Point 32 local area network as a
workstation. This immediately provides the user with access
1o the resources allocated on the network (large capacity
Winchester storage facilities, shared files, shared software,
network printers, etc).

To link into the network requires both hardware and a
software package (supplied with the network). The
hardware consists of the LAN Board and a simple jack plug
connection for linking into the network.

The software for the point 32 network is based upon
Microsoft's MS-DOS 3.06 plus the MS-NET module. This
provides the front end for both the user and the applications
programmer.

The lower level communication mechanism for the network
is based upon the Corvus Omninet. Thisis a 1 Mbit/s
synchronous bit-oriented (SDLC style) transmission system
which employs a carrier-sense multiple access/collision
avoidance protocol to ensure the integrity of data
transmissions.

A network software device driver (often referred to as the
transport layer) is used to link the Microsoft modules to the
low level Corvus Omninet System.

71.3/8 Options

Infra-red Mouse

The Mouse for the F1 is identical to the Mouse for the
Portable (apart from the colour of the plastics). It has been
designed to be used either as a Mouse (by tipping it forward
and rolling it along the desk), or as a tracker ball (keeping the
Mouse stationary and moving the ball by finger movements).

The mouse is normally employed for cursor movement
control and menu selection in graphics environments, but
can be used within other applications as required.

A mouse device driver is supplied with the standard release
software to allow applications to use the features and
facilities of the device. This is an installable device driver
which is loaded into the system using the MS-DOS
CONFIG.SYS file mechanism.

The Mouse uses infra-red technology in a similar way to the
Keyboard. As with the Keyboard, the Mouse can be sited
within the vicinity of the F1 but does not necessarily have to
be directly in front of it. {The front edge of the mouse must
of course point at all times during usage in the general
direction of the front of the machine}. The maximum
practical range of the Mouse is specified at 2.5 metres away
from the Systems Unit.

To avoid the possibility of interference in multiple machine
environments, a “light pipe” is alsc available for linking the
Mouse and Systems Unit together. This is a section of fibre
optic cable {similar to the Keyboard cable) which directs the
infra-red Mouse transmissions to the receiver circuits of the
parent Systems Unit.

A two-position switch is located on the base of the unit. This
should be set to the position towards the rear edge if using
the light-pipe and the other posion if not, The function of the
switch, is to turn off one of the infra-red transmitting LEDs
to conserve battery power.

To improve system reliability and ensure that the BIOS interprets
the data transmitted from the Mouse correctly, the Mouse data
is encoded using a similar format as used for the Keyboard.
This employs a four byte synchronous data transmission
format with each data byte encoded with Hamming codes.

Mouse data is transmitted in serial packets of data, with each
packet consisting of a 32 bit code sequence. The information
contained in the packet signifies the relative movement of
the Mouse from it's previous position, and the state of the
two Mouse buttons {pressed or not pressed).

Options 1.3/9

Apricot MSD

This device provides the F 1 with instant access to a large
capacity {10 Mbyte) Winchester Disk. It is supplied as three
items; a Winchester Controtler Board, a Winchester Disk and
a small power supply unit. The Winchester Controller Board
plugs into the F1's Expansion Slot, the other two items are
mounted externally to the Systems Unit.

The Winchester drive is supplied pre-formatted complete
with system tracks. It is configured as a single volume (drive
A) to take full advantage of the tree-structured directory
features of MS-DOS 2.11 and its future derivatives. (The
floppy disk drive in a single Winchester system is
automatically re-assigned as drive B)

Support for a Winchester is inherent in the standard ROM
BIOS. All the user has to do to use the Winchester is install
the components correctly and switch on.

Included in the initialisation routines of the ROM BIQS is a
routine which checks for the existence of a Winchester
Controller Board. If present, it checks the Winchester Disk
Drive to determine it’s size.

At the end of the initialisation sequence, the ROM BIOS
displays the startup screen. If a Winchester is present, thisis
slightly modified from the standard display, to include the
size of the Winchester Disk.

At the start of the boot sequence, the ROM BIOS first checks
the floppy disk drive for a bootable disk. If not present, the
machine boots automatically from the Winchester Disk,
providing the user with instant access to a large non-volatife
storage medium.

7.3/10 Options

Expansion Unit

The F1 Expansion Unit provides the F1 with multiple
Expansion Slot capability. It is a separately powered unit and
has been designed to be linked into the F1 using the F 1
expansion connector. This is accessible by removing a small
cover panel on the right hand side of the machine.

The cable extension extends the expansion bus out of the F 1
into the Expansion Unit. Here it is bufferd and re-powered to
provide sufficient drive capability for two Apricot compatible
expansion siots.

Options 1.3/17

Section 2
Hardware
Detail

Contents

Iintroduction

Details
Mechanics
Connectors
Front Panel
System Board
Infra-Red Detector Board
Disk Drive Unit
Expansion
Power Supply
Physical dimensions

Hlustrations

1. Systems Unit
2. Rear Panel Detail
3. Systems Unit Schematic

Systems Unjt 2.1]7

introduction

The Systems Unit is the box which houses the the majority of
the electronic and electrical components of the F 1.

This chapter describes the physical and electrical details of
this unit.

1. Infra-Red Detector Board

2. System Board

3. Power Suppy

&, Expansion Connector
5. Expansion Slot

8. Metal Bridge assembly
7. Metal Bridge assembxly
8. Disk Drive

9. RF Shielding

Figure 1. Systems Unit

2.7/2 Systemns Unit

Jetails

Mechanics

All the electrical and electronic components are contained
Internally within the plastic case that forms the
Systems Unit.

The majority of the processing circuitry is contained on a
single printed circuit board; termed the System Board.
Infra-red detectors and a small section of logic circuitry are
contained on a second board, the Infra-Red Detector Board
(see Figure 1). o

The System Board lies flat along the bottom of the Systems
Unit. On the System Board are the main processor, the
system memory, and their associated clocks, plus timing
logic and control bus circuitry. Two expansion bus
connectors are fitted onto the board for extending the
system bus {address, contraol, and data lines).

Also on the System Board are the controllers and interface
circuitry for; the disk drive, various types of display monitor.
infra-red input data, a parallel printer, RS232C serial
communications and sound generation.

The infra-Red Detector Board is mounted on a metal bridge
above the System Board and encased within a metal box. It is
located at the front of the Systems Unit, Photodiode
detectors are mounted on the edge of the board, to capture
IR transmissions from the Keyboard or Mouse. The detector
board transtates IR pulses into electrical signals and supplies -
them to the decoding circuitry on the System Board.

Mounted next to the Infra-Red Detector Board on the same
metal bridge above the System Board, is the MicroFloppy
Disk Drive Unit and a loudspeaker.

At the rear of the Systems Unit is another metal bridge
assembly, which supports the Power Supply Unit.

The disk drive, IR Detector Board and speaker and power
supply components are surrounded by shielding. The
internal connectors to these components are all iocated in
the middle section of the System Board, accessible between
the two bridges.

Svystems Unit 2.7]3

After the back panel has been removed and internal links to
the other components have been disconnected, the System
Board can be slid horizontally out of the Systems Unit for
servicing.

Cooling is achieved by convection. Heat is generated
principally by the Power Supply Unit and the MicroFloppy
Disk Drive Unit. Vents are incorporated in the design of the
Systems Unit plastics to ensure an adequate dissipation of
waste heat without the need for a cooling fan.

Connectors

The connector for the mains power input, and the
connectors for standard peripheral units {printers, plotters,
external modems, display monitors, etc) are all located on - -
the rear panel of the Systems Unit (see Figure 2).

Viewed from left to right, the peripheral connectors along
the Systems Board at the bottom of the rear panel are:

1. An RS§232C serial communications port {25-pin female
D-type). |

2. A Display Unit connector for either an F1 monochrome
or an F1 colour Monitor {9-pin male D-type).

3. A Video Jack Plug socket for a composite TV monitor,

4. A Parallel Printer Port (36-way female Centronics
connector).

Above the Parallel Printer Port is the mains power input
socket {3-pin male) with the power on/off switch above that,
The mains fuse is accesed by prising open the hinged panel
from the top which protects and surrounds both switch and
socket.

To the left of the mains power input is a power input socket
{2-pin male) for a 17 Volts A.C. supply. This is used only with
the F1 monochrome monitors and provides the means of
powering the monitor.

The F1 also has the ability to drive a standard domestic TV |
but requires an optional modulator which makes use of the
internal Expansion Slot.

At the left hand end of the rear panel there is a plastic
expansion plate. This can be removed to allow external
equipment to be easily connected to Expansion cards fitted
into the internal Expansion Slot with the minimum of
modification to the rear panel.

2714 Systems Unit

An external Expansion Connector is located next to the
internal Expansion Slot on the System Board. This is
provided for linking in the optional Expansion Unit.
Removing a cover panel from the side of the Systems Unit,
provides the necessary access to the connector for the
Expansion Unit.

Another cover panel is also located on the righthand side of
the F1 but closer to the front. It can be removed to allow the
control lines from the Floppy Disk Controller on the System
Board to be routed to a second MicroFloppy disk drive.

This requires the existing Floppy Disk Controller ribbon cable
assembly to be replaced by a daisy-chained cable with two
connectaors; one for the internal drive and one for the
external drive. {Routines are inherent within the BIOS which
support a dual disk drive configuration).

. Power Supply Input—Monochrome Monitor
. Mains Switch and Fuse assembly

. Mains Input

. Centronics Connector

. Composite Video Connector

. Colour/Monochrome Display Connector

. R5-232 Connector

. Expansion Plate

. Expansion Cover

1
2
3
4
5
8
7
g
9

Figure 2. Rear Panel Detail.

Systems Unit 2.1/5

Front Panel

The front panel of the Systems Unit contains the slot for
loading disks into the MicroFloppy Disk Drive, a column of
four status display LEDs, and a transparent window through
which the majority of infra-red transmissions are captured by
a wide-angle lens mounted on the IR detector board.

Behind the transparent window on the |R Detector Board

are three photodiodes; one surrounded by the lens, the other
two fitted into sockets on the front panel. The sockets are for
connecting light pipes from the Keyboard and/or the Mouse.

The right hand socket operates a switch which cuts out the
photodiode receiver surrounded by the lens to prevent
interference from other infra-red sources in multiple
machine environments. The other two receivers are
unswitched and are always left switched on.

The status display LEDs are used to indicate:

POWER Systems Unit power on
CAPS LOCK CAPS LOCK key active

STOP STOP key active
DISC Disk drive in use
System Board

The System Board incorporates the circuitry which perform
the processing tasks within the system. Connectors that link
the board to the other units within the Systems Unit and to
external peripherals are also located on the board.

2.1/6 Systems Unit

The major circuit components on the board are:

1. The B0O86 processor operating at 4.67 MHz.

2. The Boot PROMSs, which contain the system code for

bootstrap loading and the BIOS driver routines.

3. The system RAM {256 KBytes of dynamic RAM}).

4. A Z80 Serial input/Output {(SI0O) controller, which
incorporates two independent communication
channels, one for R$232 serial communications, the
other for infra-red input data and for generating
sound.

. A ZB0 Counter/Timer Circuit (CTC), with four
independent, programmable counter/timer channels.

.AWDZ2797-02 Floppy Disk Controller (FDC).

. Display controller circuitry.

. A 16 x 4-bit static RAM, which is used as a
programmable Colour Palette.

. An addressable, 8-bit Latch, which is used as a
Control Port.

. An B-bit Data Latch for the Parallel Printer Port.

. A 14 MHz oscillator which forms the fundamental
frequency source for all the clock signals on the
board.

Other ancilliary circuitry includes; data latches, multiplexers,
transceivers, counters, and decoders. These are used as
support control circuitry for synchronising signals on the
System Bus, refreshing the DRAMSs and cycling through the
screen refresh addresses, and buffering transfers to external
peripherals.

-0 O 0O~ O

oy —

The chapter following provides a detailed desciption of the
System Board and of its main functional components.

Systems Unit 2.7]7

infra-Red Detector Board

The Infra-Red Detector Board is located above the System
Board behind the transparent window in the front panel of
the Systems Unit. It is linked to the System Board by a 4-wire
cable assembly. This provides + 12V and +5V dc regulated
supplies to the board and also carries the decoded IR signal
pulses to the System Board. '

The Board incorporates three photodiode detectors, an
amplifier section, and a timer circuit {(see Circuit Diagram in
Appendix D). It converts input infra-red pulses into a form
suitable for use by the receiver circuits on the System Board.

Two of the photodiodes are fitted behind sockets on the right
of the transparent window. These sockets are for connecting
light pipes to the Systems Unit.

A third photodiode detector is surrounded by a lens, in order
to optically amplify freespace infra-red transmissions.

Fitting a light-pipe into the right hand photo-diode socket
operates a switch which switches the diode surrounded by
the lens off. This action is necessary to reduce the chance of
interference from other infra-red sources in multiple
machine environments.

Detected infra-red pulses are converted into electrical pulses
by the diodes. To account for the variations in signal strength
of the input infra-red pulses, and to prevent saturation of the
diodes, the current through the diodes is regulated by an
a.g.c amplifier (Q1).

Following conversion to a voltage, the raw input pulses are
amplified by a high gain ampilifier circuit (Q2, Q3). This
produces a pulse output with an amplitude of approximately
2 to 5 V which is then supplied to a 555 timer circuit.

The timer is wired in a non-retriggerable mode to prevent
false triggering once a pulse is detected. The timer “squares”
up the raw input pulses of 18 to 20 us duration and converts
them into 25 ps duration output pulses. These are supplied
to the System Board.

On the System Board, the transmitted signal is separated
into timing and data pulses, so that the data signal can be
clocked into the Z80 SI10 as a standard monosync
transmission.

2.1{8 Systems Unit

Disk Drive Unit

The MicroFloppy Disk Drive Unit is mounted on a metal
chassis above the System Board, behind and slightly on the
right of the front panel.

The disk eject button of the Drive Unit fits through the front
panel to provide the means for ejecting disks out of the disk
drive.

A ribbon cable assembly connects the disk drive to the disk
interface on the System Board. A second, 4-way, cable
assembly supplies power from the System Board to the
Drive Unit.

The MicroFloppy Disk Drives use 80-track double sided 3.5
inch MicroFloppy disks with a total storage capacity of 720
Kbytes of formatted data. The BIOS is also configured to
allow the user to read, write and format 70-track single sided
3.6 inch MicroFloppies.

The DISC indicator on the front panel of the F1 is connected
to the control line which controls the loading of the disk drive
heads. The indicator is illuminated every time a signal is sent
to load the heads and remains so until the disk drive heads
are unloaded. '

Expansion

Two Expansion connectors are provided for extending the
System Bus (address, control, and data lines). One of these
is an Apricot compatible Expansion slot. This is located
internally close to the Power Supply Unit and is designed to
take any of the ACT Expansion Boards.

The second is the Expansion Connector for linking in the
optional Expansion Unit, as previously discussed. This is
located behind a snap-fit cover on the right hand-side of the
Systems Unit.

The internal Expansion Slot is a 64-way connector {DIN
41612 2 by 32-way female with a type B housing). The
signal lines connected to the Expansion Slot are 85%
functionally compatible with all other machines in the
current range of Apricot microcomputers. (The main area of
difference is that there are no DMA facilities available on

the F 1),

Systems Unit 2.71/9

A removable Expansion cover panel is located on the rear
panel of the Systems Unit to allow any Expansion Boards
fitted into the Slot to be linked to external equipment as
required.

The external Expansion Connector (60-way male IDC} is
positioned on the right side of the Systems Unit. ltis
designed for linking in the optional Expansion Unit. This unit
provides the user with multiple Expansion Slot capability. The
unit has its own power supply and repowers and buffers the
expansion bus to drive four Expansion slots. The Expansion
Unit is also supplied with a — 12 Volt supply line from the
System Board to power a cooling fan.

Power Supply

General

The mains power input is connected to the Systems Unit via
the 3-pin male connector on the rear panel. The mains
supply is fed through a line filter via the input fuse and mains
switch before being supplied to the rectifying and regulating
circuitry of the Power Supply Unit (PSU).

The PSU rectifies mains supplies of either 110 Volts or 240
Volts AC. The unit is reconfigured to the appropriate mains
voltage by connecting an internal jJump lead across the
appropriate pins within the PSU.

The PSU is of switched mode design, providing regulated
outputs of + 12V, +5V and — 12V for use by both the
System Board and all the other units within the Systems
Unit. Other units are not fed directly with the dc supplies
from the PSU, but are supplied via the System Board wiring
and various cable assemblies. This includes the Disk Drive
Unit, the Infra-Red Detector Board, and any expansion
boards that are fitted to the internal Expansion Slot.

All other external devices, except the F1 monochrome
monitor, are normally supplied with mains directly to their
appropriate input.

The F1T monochrome monitor is powered by a 17V ac supply
which is sourced by the transformer supplied with the
monitor. This plugs into the two-pin connector on the

rear panel.

2.1/70 Systerns Unit

The 17V supply is routed through to the System Board
wiring via the PSU dc distribution cable assembly. It is
rectified and switched under relay control through to the
9-pin display connector on the rear panel. Switching the
mains supply to the F1 on and off switches the 17V supply
to the monitor on and off.

All power supply components are housed in a shielded case.
A fuse is located in the mains input line, within the PSU. This
is in addition to the user accessible mains input fuse within
the mains switch housing.

DC Supply Distribution

The regulated outputs from the PSU are supplied to the
System Board via a 7-wire cable assembly, which is
terminated at both ends in Molex connectors.

The PSU provides two separate regulated supplies of +5V
dc, a single regulated supply of + 12V DC, and another
single regulated supply of — 12V DC. The 17V acforthe F1
black and white monitor is also routed through the PSU.

The maximum current ratings for the various supplies are
detailed below, in the order in which they are supplied to the
Molex connector on the System Board (starting nearest the
centre of the Board).

1. + BV supply 3.2A
2. Common ground

3.+ 12V supply 1.0A
4. Common ground

5, — 12V supply 0.2A
6. 17 Volts ac

7. 17 Volts ac

Distribution of the supplies from the System Board to the
other areas are via the board wiring to the appropriate
connector.

The System Board provides:

1. +12V and +5V to the Infra-Red Detector Board, via a
Molex connector and 4-wire cable assembly,

2, +12V, +5V and — 12V to the internal Expansion Slot.
{Units connected to the external Expansion Connector
must supply their own power; the — 12V output is used
to power the Expansion Unit fan.)

3. +12V and +5V to the disk drive, via a Molex
connector and 4-wire cable assembily.

Systems Unit 2.7]11

Fuse rating

The rating of the fuse on the rear 'panel of the Systems Unit
Is as detailed below.

240V mains input - 2A, b x 20 mm fast action.
115V mains input - 2A, 5 x 20 mm fast action.

Physical Dimensions

Height: 6.3 inches (160 mm)

Width: 8.7 inches (225 mm)

Depth:16.5 inches (420 mm)

Weight: 9.6 Ibs {4.35 kg}
1 DISK LED
BELDEM SCREENED DRIVE BOARD -~ 7
MAINS CORD SET L—I
110V 2400 SIGNAUC%;;T\E“E\LL/’ g%ﬁ’-\ﬁBLE /'i E%JEOLIPOWEH gPEAKER CONNECTION
SWAY
IR ;] Rs232 PORT
BOARD 4_{@\‘ AEAAY
] CENTRONICS PRINTER
SYSTEM PORT- 38-WaY
POWER | o/ BOARD i
] SUPPLY 4 EXPANSICM PORT
U N IT BO-VWAY
| S—
EXPANSION 50T
S4-WAY
COMPOSITE
VIDED PORT

Figure 3. Systems Unit Schematic

2.1/72 Systems Unit

Contents

introduction
Details

General

Processor

Memory

Interrupt Control
Display Control
Floppy Disk Control
Expansion
Keyboard/Mouse data
System Reset

RS232 Communications
Parallel Printer Port
System Timer

Sound Generation
Port Addresses

Hiustrations

1. System Board: data flow schematic

Systern Detail 2.2[1

introduction

The purpose of this chapter is to present an overview of the
principal circuit elements on the System Board. The
programmable elements are then broken down into further
detail in subsequent chapters. This chapter also describes
various miscellaneous areas of circuitry which do not
warrant a chapter of their own.

The chapter also provides a full list of memory and 1/0 por{
addresses as allocated within the F 1 system.

2.2]2 System Detail

General

The devices on the System Board, and the control, timing
and interface circuitry associated with them, are
interconnected with the Intel 8086 processor using the
standard three parts of a 16-bit bus-based architecture; a
16-bit Data Bus; a 20-bit Address Bus; and a multi-purpose
Control Bus.

Figure 1 represents this architecture in a block schematic
diagram. It shows all the major peripheral areas of circuitry
which are linked to the CPU. For simplicity, the diagram
omits the detail of timing and control signals.

The processing system operated on the board is a real time
interrupt driven system based on the interrupt structure of
the 8086 and the interrupt facilities provided by two Zilog
chips, a Z80 SI0 and a Z80 CTC. There is no proprietary
interrupt controller. The two Zilog devices operate together
to provide all the necessary prioritised interrupt handling.

Other hardware functions and processes which require
interrupt facilities are in turn “connected” to these two
devices instead of being directly connected to the 8086
(apart from the disk controller which uses NMI).

System Detail 2.2/3

1 FLOPPY DISK CO4NECTOR

XEYEDARD) "
MOUSE DaTA | 372 COMNECTOR I

[IY) SOUND F
] R
= az237
8 I X g
J SECOZER | &
11 1o i '
o SEALAL INTERFACE ZBOSHY
&) —————— A - 1 M
HITMAFPED, FRINTEF; MER
sl COMTADE PORTS INFERFALE \ CMAMNELA | | CHANMELE | o 280 ETC
T CONTAGE
L - 5 -
¥ ‘; [R
TEST hMI T , =
INTZ)
N 14 BN * 1 INT3
= . [[U o I .
g K CCNTROL BUZ b
— B L B - . L
w i
% i
&
@
&
BOB z
ChU = N £
e R . . 2
—* 2 K 7 —| [osaBusiisoim o g
ag i1
£ I
—* g2 - - - — #SORERE BUSIRGN AWE T L ™y
fc =
g3
nEs CK
. : 3 TATA
4 0.} MH: ki blE e DaTA N BT D{f.f:;‘;v
¥ DECOLHG
VICED :
g ADDRESS
BOOT AOM LINE —
RESET | " Fehbh COUMTER!] 5 SUETEM
CONTROL “RaM = . l ¢ i’ #
REERESH Y L
: By CELOUAY
A] - S [uing
M PALETTE P 5 ot
= R4 LB 0 3
5 ig Et COMROSTE
=¥ . e e GPNC 2 uCOMADS;
553; atmfﬁ)‘fs - LS EF NENIGH
[i37) LT
asty ROM OECOZER e [» £
£ SYNG —— %1 anapon

Figure 1. System Board: data flow schematic

2.2/4 System Detail

Peripheral support for the 8086 is providéd by a mixture of
intelligent support chips and combinations of simpler
standard logic elements.

These include:

1. A Western Digital WD2797-02 Floppy Disk Controller
for controlling the MicroFloppy Disk Drive.

2. The Zilog 280 SI0/2 which interfaces to the R5232C
port, receives keyboard/mouse data, generates sound
and also provides part of the interrupt structure.

3. The Zilog 280 CTC which acts as a general system |
timer, determines the baud rates for the RS232C port
and also provides part of the interrupt structure.

4, 256 Kbytes of DRAM (dynamic RAM — 512 Kbytes in
the USA version). This is dual ported functioning as
system RAM and bit-mapped Display RAM.

5. 32 Kbytes of ROM which store the code for the ROM
based BIOS {expandable to 64 Kbytes).

6. A 16 x 4-bit static RAM which is integrated into the
display control circuitry for selecting the colours/grey
levels on the display monitor. This is termed the palette.

7. A parallel printer port constructed from discrete
7418 components.

Other areas of circuitry include; data latches, multiplexers,
and transceivers; counters, timers, and decoders plus other
pieces of “glue” logic. These devices are used in the
supporting contro! circuitry for synchronising signals on the
System Bus, generating DRAM and screen refresh
addresses, and buffering transfers to external peripherals
and devices connected on the Expansion Bus.

Svstem Detail 2.2/5

Processor

Details of the Intel 8086 processor are widely available. It is
a true 16-bit processor, directly language compatible with
the more commonly used 8088. It possesses:

1. 16-bit wide internal register architecture.
2. 16-bit wide external data bus.

3. Segmented addressing structure to support modular
programming.

4. The capability of addressing 1 Mbyte of memory space
and 64 Kbyte of system |/0.

The 8086 is configured to operate in minimum mode (i.e. it
does not support a multi-processing configuration). it's basic
clock frequency is 4.67 Mhz, which is derived from a 14
Mhz oscillator.

Wait States

A minimum of one wait state is automatically inserted into all
memory and i/0 transfer operations to and from the
processor. This is extended in some cases to four wait states
to suit the speed of slower peripherals (i.e. all peripherals
mapped into the system /0 address range O0OH to 3FH —
see |/0 address map at the end of the chapter).

CPU accesses to read from and write to locations in the
System RAM (which includes the bit-mapped display RAM)
are interleaved with accesses from two refresh circuits,
which take precedence over processor accesses. One of the
refresh circuits is used to refresh the Display; the second to
refresh the DRAM array.

As processor accesses are asynchronous with the refresh
cycles, the number of wait states inserted when accessing
the Systen RAM is variable, being dependent on the refresh
cycle (display refresh or DRAM refresh — if any} in progress.
The minimum number of wait states inserted on a memory
access is one; the maximum is 3.

External devices connected to the Expansion Bus can extend
the basic one wait state to suit the slower speed of it's own
peripherals, by activating the appropriate Expansion Bus
input ready line (IORDY for /O mapped peripherals; MRDY
for memory mapped peripherals).

2.2/6 System Detaif

Memory

The F 1 is fitted with a minimum of 256 Kbyte of system
RAM (using 64K x 1-bit DRAMSs}. This is expandable by
fitting one of the standard Apricot RAM expansion boards
into the Expansion Slot. Initially in the USA only, the F1 is
fitted with 512 Kbyte RAM as standard using 256K x 1-bit
DRAMSs. This is expandable to 768K using an Apricot 256K
RAM Expansion Board.

In the 256 Kbyte model of the F1 range, the System RAM is
formed by two banks each of 128 Kbyte; one mapped into
the address range OO0O00H to 1FFFFH, the second into the
address range 20000H to 3FFFFH.

Each bank is composed of sixteen 64K x 1-bit DRAMs (one

bit per data line).

Iin the 512 Kbyte model of the F1 range, the System RAM is
formed by a single bank of 256K x 1-bit DRAMSs (half the
board is left unpopulated). In this model The System RAM
occupies the address range O0000H to 7FFFFH,

The system RAM is located at the bottom end of the available
memory address range and is sub-divided into a2 number of
allocated memory areas. These are specified by the
hardware/BIOS as follows:

Address (hex) Use

00000 — O03FF Interrupt vectors

00400 — O1DFF BIOS working area
(pointers/ASCIH image)

01EOQ — O1FFF Video Line Pointers

02000 — OC7FF Screen bit-image

QC800 — OEFFF BIOS data and stack

OF0Q0 — 3FFFF» DOQS/application/user area

* QOFO00 — 7FFFF on 512 Kbyte F 1, both models
expandable to BFFFFH.

Not all of the available System RAM is available to the user or
application.

The lowest 1 Kbytes are reserved for the standard Intel
interrupt vectors (4 bytes per entry).

System Detail 2.2]7

42 Kbytes are reserved for mapping a bit-image of the
screen (2 Kbytes are not normally used). 512 bytes are used
to implement video line pointers. (Further details of display
memory utilisation are provided in the section below on
display control).

All other defined areas are allocated by the ROM based
BIOS/operating system interface (see the “Guide to the
BIOS" chapter for further details).

There is no proprietary DRAM controller for generating the
necessary timing signals for accessing the DRAMSs and
refreshing the DRAM array. This is instead implemented by a
series of 74LS counters, latches and other discrete logic
elements. Refreshing the DRAMSs is carried out during the
display blanking period.

The System RAM area is not the only area of memory within

the F1. Two other areas exist. One area is the palette RAM,
the second is the Boot ROMs.

The palette is a small area of memory-mapped RAM formed
by a 16 x 4-bit static RAM. It occupies 32 bytes of the
available memory address space, starting at EO00O0H.

(The RAM data lines are wired to the 4 LSB data lines of

the system data bus). It is used to determine the colour

mix at the display outputs. {This equates to grey level selection
if a monochrome monitor is connected — see display

control below).

The Boot ROMs are located at the top of the available
memory addresss space. The Boot ROMSs contain the bootstrap
loader, diagnostics, calculator software and the BIOS cbde/
device driver routines for handling the standard hardware.

The BIOS code is currently contained in two 16K x 8-hit
ROMs. The board is tracked to take 32K x 8-bit ROMs to
aliow for future BIOS expansion.

2.218 Svystem Detail

Memory Map

FFFFFH 1M
ROM
F80O00H
ROM Expansion
FOO00H
Reserved
EOO1FH Palette RAM
EQCQOOH
Reserved
BFFFFH . 768K
| RAM Expansion
7FFFFH 512K
3FFFFH 256K
Standard
System RAM
O0000H

256K F1 512K F1

System Detail 2.2]9

Interrupt Control

The interrupt structure operated within the system is
provided by the interrupt handling facilities within the Z80
SI0 and the 280 CTC. These two devices operate together to
form a prioritised interrupt structure. Both devices can
generate an interrupt and also produce an interrupt vector to
indicate the cause of interrupt.

The Z80 S10 handles interrupt requests associated with:
1. Serial communications via the RS232C interface.
2. The keyboard/mouse data input channel
3. The sound output channel.

4. The Busy/Not Busy status control line from the printer
port.

The Z80 CTC handles interrupt requests from devices on the
Expansion Bus, and uses one of its own counter/timer
channels to generate the System Clock interrupt.

These two controllers are connected together in a daisy
chain configuration to prioritise interrupt requests to the
interrupt Request (INTR) input of the CPU.

A hardwired connection between the two controllers
automatically sets the priority of interrupts from the SIO
higher than those from the CTC. The interrupt output lines
from the two devices are required together in wire-ORed
fashion to form a single input to the CPU’s INTR input.

The CPU responds to interrupt requests by implementing a
two-stage interrupt acknowledge cycle, which causes the
relevant controller to supply an interrupt vector onto the
System Data Bus.

When the interrupt has been serviced, the programmer must
implement a Return from Interrupt command sequence to
clear the interrupt from the daisy chain.

The various interrupts can be enabled and disabled
individually by program commands to the SiO and the CTC.
All these interrupt sources can be masked as a group by
clearing the Interrupt Enable Flag in the CPU. This action
disables the Interrupt Request (INTR} input to the CPU.

2.2/10 Sysiem Detail

The Non-Maskable Interrupt (NM[} input to the CPU has a
higher priority than any of the maskable interrupts to the
Interrupt Reqguest (INTR) input. The NMI input is connected
directly to the Interrupt Request (INTRQ} output of the
Floppy Disk Controller (FDC). This cutput is activated
whenever a disk read, write or formatting operation is
successfully completed. it is alse activated for certain errors
in disk access operations.

Display control

The F1 has the ability to display information on a variety of
different display monitors. These include:

1. An F 1 colour monitor.
2. An F1 monochrome monitor.
3. A standard composite monitor.

4. A standard domestic colour TV {when fitted with the
optional TV modulator}.

The design of the display circuitry of the Apricot F1 is based
on a bit-mapped architecture. There is no hardware
differentiation between text and graphics; everything is
pixel-based. i.e. A “dot” on the display screen is mapped by a
corresponding bit(s} in the display memory.

The display memory is part of the system RAM and occupies
42 5 Kbytes in the lower 64K. 42 Kbytes are allocated in the
system RAM to map out a pixel image of the display screen;
the other 512 bytes are used to implement a series of 16-bit
addresses which form a pointer to map each display scan line
{video line pointers).

There is no high level CRT controller for generating display
timing signals and display address lines. These are instead
implemented by a variety of simple 74LS series components
(counters, latches, etc).

The modes, resolutions and display features available to the
programmer provided by the available display RAM are as
detailed below. The resolutions described match the
resolutions of the current ACT colour and monochrome
monitors produced for the F 1.

Systern Detail 2.2]117

The F1 can be configured to drive either a colour or
monochrome monitor with the programmer having the
choice of displaying either 200 or 256 lines. The
programmer also has one further option, either using an 80
column/640 pixel mode or a 40 column/320 pixel mode.

in the 640 pixel mode, the programmer can display up to 4
colours simultaneously (from a choice of 16) on a colour
monitor, or up to 4 levels of greyscale if a monochrome
monitor is connected instead.

In the 320 pixel mode, the programmer can display up to 16
colours simultaneously on a colour monitor, orup to a
maximum of 8 levels of greyscale if a monochrome monitor
18 connected instead.

The 320 pixel/40 column mode is the mode which produces
a sensible display output on a standard TV. {The relatively
low bandwidth of a TV compared with a video monitor does
not generally allow a sharply defined picture to be produced
in the 640 pixel modes}).

The table below summarises the display modes available on

the F 1.
Screen mode Resolution Max. No. of Colours
Available
40 column 320 x 256 16+
40 column 320 x 200 16
80 column 640 x 256 4
80 column 640 x 200 4

* This normally equates to 8 grey levels on a
monochrome display due to the inherent limitation of
the display in being able to successfully differentiate 16
grey levels.

The Display Control circuitry provides both the video drive
signals and the necessary synchronising pulses which
control the movement of the video beam across the screen
to drive a variety of display monitors.

For colour monitors, the video signals are the digital IRGB
outputs with horizontal and vertical scanning controlled by
the signals HSync and VSync respectively. These are supplied
via the S-way D-type connector on the rear of the F 1.

2.2{12 System Detail

For the F1 monochrome monitor, the video signals are the
digital RGB outputs (I is not decoded in the monitor due to
the it’s inability to produce 16 greylevels with acceptable
differentiation). Horizontal and vertical scanning is
controlled by HSync and VSync respectively. The signals are
supplied via the 9-way D-type connector normally used for
the colour monitor on the rear of the F1, together with +
17V (rectified a.c.} for powering the monitor.

The connection for a composite video monitor is the jack socket
on the rear panel of the F 1. This provides a composite video
output consisting of a mixed video and sync signal, composed
by combining the digital RGB signals with Hsync and Vsync,
to produce an analogue greyscale equivalent. (As with the F1
monochrome monitor, the | signal is not used, with the result
that only a maximum of 8 greylevels can be displayed).

The display circuitry cannot directly drive a standard
domestic colour TV. This requires the optional TV modulator
to be fitted into the internal Expansion Slot. When fitted, the
TV modulator is supplied with the IRGB digital video signals
and a combined horizontal/vertical sync signal via a Molex
connector. These are then converted into the appropriate RF
signal on board prior to being routed to the TV,

The Display Control circuitry consists of the following areas:

1. The screen RAM which holds the bit-image of the
screen {part of the system RAM).

2. Pointer RAM (also part of the system RAM). This holds
16-bit addresses of the start of each line of video data
stored in the screen RAM.

3. Various counters which are used to access the pointer
RAM data and the screen RAM data, cycle through
DRAM refresh addresses, generate horizontal and
vertical sync puises for setting the rate at which the
video beam scans across the display, etc.

4. A pair of shift registers which decode the video data
accessed from the screen RAM into a suitable code for
driving the palette RAM.

5. The 18 x 4-bit palette RAM which translates the video
data from the screen RAM inte the appropriate
colour/greyscale coded output.

6. The display output circuitry which converts the data
accessed from the palette into the appropriate display
signal(s) for driving the various display monitors.

System Detall 2.2[13

Associated with the various counters is a State Timing ROM.
This acts as a timing and control decoder. It is programmed
to send out repeated sequences of timing signals, which
control and coordinate the various accesses allowed to the
System RAM {display refresh, CPU, DRAM array refresh).

Coded information about each pixel of the display is stored in
the Screen RAM with each scan line of video data
represented by a linear sequence of 80 words. The “80-word
video lines” are accessed by the programmer writing the
appropriate video line pointer data into the Pointer RAM.
This equates to the address of the first word in each linear
sequence of 80 words.

The number of bits used to represent each “pixel” on the
screen is dependent on the mode selected. In 40 column
mode, each “pixel” can be displayed in any one of 16
colours. This is represented by a 4-bit code in the system
RAM. Each 4-bit code is translated into colour coded pixel
data via the palette RAM. The paletie RAM provides the
programmer with the facility to translate the 4-bit code from
screen RAM into whatever display pixel colour required.

In 80 column mode, each “pixel” can be displayed in any one
of four colours from 16. This is represented by a 2-bit code
in the system RAM. Each 2-bit code is translated into colour
coded pixel data via the palette RAM. The programming of
the palette handles the translation of the 2-bit code into the
appropriate display pixel colour required.

The palette in the 80 column mode has to be programmed in
a slightly different way than in the 40 column mode. As only
two bits in the screen RAM are available to map each pixel in
the 80 column mode, this code can only sucessfully
represent one of four colours, The palette has 16 entries
which can be programmed with any 4-bit value. The
programmer restricts the output of the palette to one of four
available colours by selecting four different values and
programming blocks of four entries in the palette to the
same value.

In the 40 cotumn mode, no such restriction is replaced on
programming the palette as the 4-bit code from the screen
RAM can be used to represent any of one of the available
16 colours.

2.2/14 System Detail

Sophisticated scrolling effects can be produced in the F1 by
simply altering the video line pointer data. This includes left
and right scrolling on character boundaries, up and down
scrolling by a minimum increment of one video line.

Scrolling is implemented by simply updating the video line
pointer data in the pointer RAM to access the appropriate
area of screen RAM to be displayed and repainting any new
image in Screen RAM as required. The video line pointers
can also be used to produce fast screen blanking. Thisis
simply achieved by modifying all the video line pointers to
point to a biank line of data.

~loppy Disk Gontrol

The Floppy Disk interface provides all the control functions
necessary for formatting and transferring data to and from
MicroFloppy Disks in the Disk Drive.

The configuration can operate with either single-sided or
double-sided disks.

The Floppy Disk Interface consists of a Western Digital
WD2797-02 Floppy Disk Controller {(FDC), a series of
buffers, a decoding circuit for selecting and engaging the
disk drive heads, and the interface connector to the disk
drive.

Four of the control lines to the Disk Drive are wired to a latch
and are under direct control of the system software.

The remaining control and data transfer functions are
implemented by the FDC. it controls the movement of the
read/write head, transfers data to and from the disks, and
monitors status signals from the drive.

All disk transfer operations performed by the FDC
(formatting, reading disk data, writing data onto disks} are
initiated by the 8086 CPU. The FDC then assumes control of
the transfer operation o the disk.

Instead of employing a DMA controller to perform the data
transfers between memory and the FOC, the F1 uses the
CPU alone. The necessary data transfer speed is obtained by
using a handshake mechanism utilising the TEST input pin on
the CPU. This is described in the following paragraphs.

System Detail 2.2/15

22016

The FDC asserts DRQ (Data Request) to signify to the CPU
that data is required on a write operation/data is available on
a read. After initiating a transfer operation, the CPU polls this
signal by monitoring its TEST input (using the WAIT
instruction}. When it detects an active DRQ signal, the CPU
transfers the data byte (to the FDC when writing/from the
FDC during aread). The CPU then restarts the polling of it's
TEST input. The cycle then repeats for each of the bytes in
the data transfer.

After the transfer of the last data byte, the FDC asserts
INTRQ (interrupt Request). This is wired to the NMI
{Non-Maskable interrupt) input line on the CPU and informs
it that the transfer cycle has finished.

Expansion

The F1 has two expansion connectors, which enable it's
basic processing system 1o be extended.

One connector is located internally within the F1 Systems
Unit and has been designed to take a standard ACT
Expansion Board. The second connector is accessible from
the right hand side of the F1 Systems Unit and is designed to
link in an external Expansion Unit.

A high degree of compatibility has been maintained with the
other products within the Apricot range of computers. This
is such that all existing ACT Expansion Boards {Winchester
Controller, Modem, RAM cards, etc) can be used with the F1
without any modifications to the Expansion Board hardware.

The internal Expansion Slot and the external Expansion
Connector are tracked onto the System Board and provide
the following inputs and oufputs:

1. The 16-bit System Data Bus.

2. The 20-bit System Address Bus.

3. Various control lines for interrupts and data transfers.
4. Power supply output(s}.

The internal Expansion Slot is the same physical connector
as used on other Apricot products {pc/xis and Portables).
This is a 64-way connector (DIN 41612, 2 by 32 female,
with a type B housing).

Svsiem Detail

Of the 64 connections routed to the slot, 53 are compatible
connections with the other products in the Apricot range
mentioned above. There are minor differences in detail in
these compatible connections. For example, the 15 Mhz
clock output on the pc/xi corresponds to 14 MHz onthe F 1.
The major differences are as follows:

1. There are no DMA facilities available onthe F1 as
provided on the pc/xi range of products.

2. The 8086 NM! line is not routed to the slot on the F1
since it is used within the system for disk transfers.

The external Expansion connector is a 60-way male IDC
connector to which an external Expansion Unit can be
connected. The connector is located on the right hand side
panel of the Systems Unit, and mounted on the System Board.

The Expansion Unit is responsible for re-powering the
Expansion Bus as necessary, to meet the drive capability of
multiple Expansion Slots. Power supplies for the unit are not
available on the connector apart from — 12V.

The connections wired to the Expansion connector are the
same as the connections to the Expansion Slot apart from
the supply lines + 12V and + 5V, which are not available.

Keyboard/Mouse Data

The receive channel of channel A of the Z80 SIC is used for
keyboard/mouse data input. It is programmed to operate in
synchronous mode (Monosync) at a data rate determined by
the incoming data stream.

It is supplied with keyboard/mouse data via the IR receiver
board which decodes the incoming data and converts it into
an acceptable serial waveform. {Details of the IR Receiver
Board are discussed in the chapter headed Systems Unit).

A signal conditioning circuit then separates the serial
waveform into data and clock signals. The data is supplied to
the receive data input of channel A (RxDA) and the clock

signal to the receive clock input (RxCKA) to clock each data
bhit into the 280 SIO.

The Z80 SI0O converts the serial data into parallel format.
It then generates an interrupt and produces an associated
interrupt vector to signify keyboard/mouse data available.

System Detail 2.2]17

The Keyboard formats a valid key closure into a serial packet
consisting of a four byte sequence. The format is the
synchronous transmission mode Monosync and is operated
at a fixed data rate of approximately 3.85 Kbits/sec.

The four byte sequence consists of the Sync header byte
(DAH), a status byte and two data bytes. The status byte and
keycode data bytes are encoded with a Hamming format.

Using Monosync means that the Z80 S10 has to first detect
a valid data pattern, (the sync header byte} before it regards
the data sent as being valid. This provides a high degree of
protection from other infra-red sources, as they will not
contain the sync header and will therefore be totally
disregarded. '

Using a Hamming format to encode the data enables the -
BIOS software to check the integrity of the data received
from the Keyboard. It produces a highly reliable system for
proving the validity of the Keyboard data, providing a
measure of protection against a transmission which contains
a valid sync byte, but invalid data (missing or corrupted data).

The Mouse transmits data in a similar four byte sequence to
the Keyboard. It uses the same sync header byte, but the
data bytes provide information on mouse movement and the
state of the mouse switches, The Z80 SI0 is unable to
differentiate between mouse and keyboard data. The BIOS
software determines this by reading a flag bit in the
synchronous data packet.

System reset

The system is reset by one of two methods; by powering the
F1 off and on or by the System reset button on the
Keyboard. Both methods produce the same effect on the
circuitry. The reset control lines to the CPU and all peripheral
circuitry are held active, setting all programmable elements
to initialised status. When the reset line returns to it's
inactive state, the CPU accesses the instruction stored at
absolute address location FFFFOH to initiate the normal
system start-up sequence.

The system reset button is located on the top edge of the
Keyboard Unit. Holding the button down for approximately
one second actions the reset circuitry on the System Board.

2.2[/18 System Detail

The actual "data” transmitted by the Keyboard to reset the
system is a contiguous sequence of sync header bytes at a
rate of one sync byte every 15.6 ms. These sync bytes are
processed in the normal way of Keyboard data via the Infra-Red
Detector Board, and clocked into Channel A of the Z80 SIO.

Each sync byte received by the Z80 S10 causes a pulse {logic
low} on the Z80 SYNCA modem control output. in a normal
data transmission, the sync byte is immediately followed by
data and it's associated clocks which terminates the pulse on
the SYNCA output.

When a string of sync bytes are sent with no data
interleaved, the pulse on the SYNCA output is extended.
{This effect is produced by feeding the SYNCA output back
to the signal conditioning circuit which separates out the
keyboard/mouse data from their associated clocks. Because
no clock pulses are received following the sync byte, the
SYNCA output alters the rate at which clock pulses are
supplied to the SI0 from the free-running oscillator in the
conditioning circuit).

The extended SYNCA pulses gradually discharge a capacitor
{C33} in the reset timing circuit. After a significant number
of pulses, the capacitor is discharged sufficiently to trigger
the output of the reset timing circuit {a 555 timer). This
action generates the system reset signal.

RS$232 Communications

The second channel {channel B) of the Z80 Si0 is available
for communication between the F 1 and external equipment
via an RS232C link.

The RS232C channel can be programmed to operate in
either asynchronous or synchronous modes, with transmit
and receive baud rates determined either via the Z80 CTC or
via the external data communications equipment.

The RS232C interface is able to support:

1. Asynchronous communications with 5, 6, 7 or 8 bits
per character and various choices of stop bits and
parity sense.

2. Bit oriented synchronous communications, such as
SDLC and HDLC.

3. Byte oriented synchronous communications, such as
Monosync and Bisync.

System Detail 2.2/19

The channel can also be programmed to generate an
interrupt and also provide an associated interrupt vector for
a variety of conditions occuring in the R§232 channel. These
include:

1. Receive characters available.

2. External/status events (e.g. modem control line
changes).

3. Transmit buffer empty.

4. Various error conditions (e.g. receiver overrun, parity
errors, etc).

Parallel Printer Port

The Parallel Printer Port is designed to drive printersand =
plotters with a Centronics parallel interface.

The Centronics connector is wired for eight data output
lines, and two of the handshake signals that are supplied
on the majority of parallel printers; Data Strobe, and
Busy/Not Busy.

The Printer interface is designed using simple 74LS
components and consists of;

1. An 8-bit latch, for the transfer of data bytes to the
printer.

2. A control port for strobing data bytes into the printer
{Data Strobe).

3. A printer status line (Busy/Not Busy) from the printer.
This is wired to the 280 SIO.

The Busy signal is wired to one of the input control lines of
the Z80 SI10 which is normally assigned as a Modem control
input. Any transition on the Busy/Not Busy line signifying a
change in the printer status, causes the SI0 to generatie an
interrupt to the CPU and produce an interrupt vector.

2.2{20 Systemn Detail

System Timer

The System Clock interrupt is génerated on aregular cycle
of 20 ms by the Z80 Counter/Timer circuit {CTC).

The Z80 CTC is a multi-purpose timing device, with four
programmable counter/timer channels and a prioritised
interrupt structure. The channels are numbered from
Channel O to Channel 3.

Channel Q is programmed to respond to interrupt requests
from the Expansion Bus. Channels 1 and 2 can be
programmed to produce timing signals which are used by
the Serial Input/Output {(S10) controller for RS232C
communications and sound generation, respectively.
Channel 3 is used by the BIOS for implementing the 20 ms
system clock.

Sound Generation

The sound generator is a single channel “device”. which can
be programmed to generate simple audio tones, audio noise,
or much more complex waveforms in the form of synthesised
sounds, over the frequency range 600 Hz to 3 kHz.

The sound generator “device” is formed by two
programmable elements which are also employed for a
variety of other purposes as previously described. These are
the two Zilog devices; the Z80 Serial Input/Output {SIO}
controller, and the Z80 Counter/Timer Circuit (CTC}).

The sound generator circuitry consists of a loudspeaker (16
Ohm, 0.4 W) driven by an audio amplifier. It is fed with a
pulsed signal from the data transmit output (TxDA} of
Channel A in the Z80 SIO.

The channel is programmed to operate in the byte oriented
synchronous mode, Monosync. This matches the
requirements of the data receive input of Channel A, which is
used as the input for data from the infra-red keyboard.

The programmer can control the frequency, waveform
shape, volume, and duration of audio output, and has the
facility to produce either simple tones or complex
synthesized sounds. The frequency of the audio output is set
by the transmit baud rate for the channel, which is supplied
from the System Board Timer (the Z80 CTC).

Systerm Detail 2.2[/27

Port Addresses

Port Function Access
Address
20H S10 channel A data — keyboard/sound r/w
22H SIO channel A command — kbd/sound w/o
22H S10 channel A status — kbd/sound r/o
24H S0 channel B data — RS232 r/w
26H SlO channel B command — R§232 w/o
26H S10 channel B status — RS232 r/o
10H CTC channel O — ext interrupt r/w
12H CTC channel 1 — RS5232 baud rate r/w
14H CTC channel 2 — sound frequency r/w
16H CTC channel 3 — system timer r/w
40H FDC status register r/o
40H FDC command register w/o
4.2H FDC track register r/w
44H FDC sector register r/w
46H FDC dataregister r/w
0O0H Centronics data port w/o
01H Drive select w/o
0O3H Drive head load {(active high) w/o
O5H Drive motor on w/0
Q7H Video lines (1 = 200, 0 = 2b6) w/0
09H Video columns {1 = 80, 0 = 40) w/0
OBH LED © enable w/o
ODH LED 1 enable w/0
OFH Centronics strobe output w/o
30H Special dummy Z80 'RETI" port w/0

2.2/22 System Detajl

Contents

Introduction

Details
General
Maskable Interrupt vectors
Non-Maskable Interrupt (NMI)
Programming the controllers
Interrupt Control Sequence
Maskable Interrupts

Programming

lllustrations

1. Interrupt Control

Interrupt Control 2.3/1

Introductio

There is no single, proprietary, interrupt controller in the F1.
Instead, the system makes use of the interrupt handling
facilities in two Z80 controllers: the Serial Input/Output
Controller (S10), and the Counter/Timer Circuit {CTC).

The 280 SIO handles interrupt requests associated with:

1. Serial communications via the RS232C interface.

2. The keyboard input channel

3. The sound output channel.

4. The Busy/Not Busy status control line from the printer .
port.

The Z80 CTC handles interrupt requests from devices on the
Expansion Bus, and uses one of its own counter/timer
channels to generate the System Clock interrupt.

These two controllers are connected together in a daisy
chain configuration to prioritise interrupt requests to the
Interrupt Request (INTR) input of the CPU.

A hardwired connection petween the two controllers {IEQ to
IEl) automatically sets the priority of interrupts from the SIO
higher than those from the CTC. The interrupt output lines
from the two devices are required together in wire-ORed
fashion to form a single input to the CPU’s INTR input.

2.3/2 Interrupt Cantrof

FDC .
WD2787-02 INTRO f————TJp» 8026 NM}

EXPANSION BUJ

INTE;INTBJ +

ZegcTe
GATA BUS > “Toml CHANMEL 0--EXPANSION 3US I
LN) [CHANMEL 1 —R5232 CLOCKS |
CONTROL BUS) IDRO —
/ }FD THT
ICHANNELZ—SDUNDFREQUENC\"I
TTC SerecT ———f TE
272 ’ Pl I CHANNEL 3=5¥STEM TIMER I
Al £a0
. o——— 508G INTR
IEQ ZBOS1D
INT
. . A RECEIVER CIRCUITS
DATA BUS }> poToo? CHANMEL A (RECEIVE] Aeon [—— {KEYBOAADMALSE)
L4 KETUCARL MOUSE DaTA PRINTER INTERFACE
PRNTES STATL:S {TSE | f——o ERINTE
i Lisa 13USY)
CONTROL BUS LD
¥ RO
o CHAMMEL A(TRANSNIT! TDA |——— AUDIO AMPLIFIER
SIGSELECT-«--—--—.- CE E0URD CUTPUT
A2 ———] BFA
m T RxDB [——
CHAMNMEL B{RECEWVE/TRANSWIT) 0B ’
R5232 INTERAFACE 76 fM——— | RS232C INTERFACE
OCCE lp——
OCDA flf——

Figure 1. Interrupt Control

The CPU responds to interrupt requests by implementing a
two-stage interrupt acknowledge cycle, which causes the
relevant controlier to supply an interrupt vector onto the
System Data Bus.

When the interrupt has been serviced, the programmer has
to send a Return from Interrupt command sequence to clear
the interrupt from the daisy chain.

The various interrupts can be enabled and disabled
individually by program commands to the S10 and the CTC.
All these interrupt sources can be masked as a group by
clearing the Interrupt Enable Flag in the CPU. This action
disables the interrupt Request (INTR) input to the CPU.

interrupt Control 2.3/3

The Non-Maskable Interrupt (NMI} input to the CPU has a
higher priority than any of the maskable interrupts to the
Interrupt Request (INTR} input. The NMi input is connected
directly to the Interrupt Request (INTRQ) output of the
Floppy Disk Controller (FDC). This output is activated
whenever a disk read, write or formatting operation is
successfully completed. It is also activated for certain errors
in disk access operations. Further details of this can be found
in the Floppy Disk Interface chapter.

2.3/4 Interrupt Control

General

Figure 1 shows the sources of the interrupt requests that
can be programmed to generate vectored interrupts to
the CPU.

The single Non-Maskable Interrupt {NMI) from the FDC to
the CPU takes precedence over all other interrupts in the
system. The CPU services this interrupt at the end of the
current instruction, or between whole moves of a block-type
instruction. o

The sources which cause maskable, vectored interrupts to
be generated by the Z80 controllers are listed below, in order
of decreasing priority.

Interrupt requests vectored via the Z80 SI10

Keyboard input data received
Sound output buffer empty
Printer Busy/Not Busy transition

RS232C input data received
RS232C transmission buffer empty
RS232C modem control input signal transitions

Interrupt requests vectored via the Z80 CTC

Expansion Bus interrupt (INT2 or INT 3}
RS232C baud rate clock pulse »

Sound generation pulse *

System Clock interrupt

* These interrupts are not usually enabled

The interrupt output lines from the two Z80 controllers are

connected together to form a single inferrupt request line to
the CPU.

The two controilers are also connected together directly, in
order to control the relative priorities of interrupt requests
along the daisy chain. The $10 takes higher priority than the
CTC when queueing interrupt requests.

Interrupt Control 2.3/5

A line connects the Interrupt Enable Qut {IEQ) output of the
S10 with the Interrupt Enable In (1El} input of the CTC.

When the SIO has cleared all its interrupt requests, IEQ is set
active (high) to enable the CTC to send interrupt requests to
the CPU.

Within each controller, the relative priority of each type of
interrupt is fixed as described below.

The Z80 S10 interrupts from Channel A take precedence
over those on Channel B. This means that interrupts
associated with keyboard input, sound output, and printer
control, take precedence over those associated with the
R5232C serial communications interface.

Within each of the two Z80 SIO channels, interrupt requests
caused by data received take highest priority, followed by
transmit interrupts, followed by external line/status events.

Within the CTC, Channel O has the highest priority, and
Channel 3 the lowest. This means that interrupts from the
Expansion Bus take precedence over the System Clock
interrupt, which has the lowest priority in the system.

Maskable interrupt vectors

There are four possible sources of interrupts for each of the
two channels in the S10, and a further four possible sources
in the CTC {one per channel).

To distinguish between the sources, a unigue interrupt
vector address is generated for each source within the
appropriate Z80 controller.

Each controller has its own base vector address, which the
BIOS writes to a register in the controller when the system is
first initialised. When the controller generates an interrupt, it
modifies the base vector address according to the cause of
the interrupt.

The SIO base vector address is BOH. This value is written to
Write Register 2 in Channel B of the SI0 by the BIOS.

2.3/6 interrupt Control

When an interrupt is generated in either Channel A or
Channel B, this base vector is modified by increasing its
value according to the cause of the interrupt, as shown in
the table below.

Modified Channel Cause of Interrupt

vector

50H SloB Transmit buffer empty

52H SIOB External control/status event
54H SIOB Received data ready

56H SIOB Special receive status

58H SIOA Transmit buffer empty

HAH SIOA External control/status event
5CH SIO A Received data ready

BEH SIO A Special receive status

The CTC base vector address is 60H. This value is written to
the Command Control Register in Channel O (see the Timer
chapter for full details).

When an interrupt is generated in one of the four channels,
the base vector is modified by the addition of O, 2, 4, or 6 to

its value, according to whether the interrupt occurred on
Channel G, 1, 2, or 3.

Non-Maskable Interrupt

At least one Non-Maskable Interrupt is generated by the FDC
whenever it actions a disk transfer command. This means
that the interrupts associated with disk transfer operations
take priority over all other types of interrupt in the system.

The CPU services an NMl interrupt at the end of the current
instruction, or between whole moves of a block type
instruction. Another NMI interrupt is not accepted until the
current interrupt has been acknowledged.

Programming the controllers

The Z80 controllers are initialised by writing data and control
bytes to registers at ports in the System |/O Space.

The BIOS initialises the controllers at system load time.
Command bytes to enable interrupts under specified
conditions can be written to the controllers at any time
subsequently.

Interrupt Conirol 2.3]7

280 S10

The S10 has two sets of Write Registers, one set per channel,
which control all its operations. Interrupt conditions are set
by writing to these registers.

There 1s also a set of Read Registers in each channel.
These record the current status of each channel following
an interrupt.

Each channel of the S10 can be programmed to generate
interrupts for any or all of the following conditions:

1. Either when it receives the first character of a block of
data, or whenever it receives a character.

2. Whenever the data output buffer is empty during a
transmission.

3. At any signal transition on the pins Ciear To Send (CTS),
Data Carrier Detect (DCD).

4. Various error conditions such as Transmit underrun,
receive overrun, parity error, framing error.

Z80cCT1C

The CTC has one Control Register and one Time Constant
Register for each of its four counter/timer channels.
Interrupts are enabled by writing to the Control Register.
There is also a Downcounter Register in each channel, which
records the state of the channel count when an interrupt
within the channel occurs.

Each counter/timer channel of the CTC can be programmed
to generate interrupts, in either counter mode or in timer
mode. In both modes, the Downcounter Register is
decremented to zero and then reloaded with a
pre-programmed count value {the Time Constant} at a count
rate determined by a clock source.

In timer mode, each decrement occurs on the leading edge
of the CTC clock input (2.33 MHz}. In counter mode, each
decrement occurs on the falling edge of the clock/trigger
input to that channel. If interrupts are enabled for that
channel, an interrupt is generated internally whenever the
downcount reaches zero.

Channel 0 is operated in counter mode. Interrupt signals
from the Expansion Bus (INT2 and INT3) trigger Channel O
to decrement a Time Constant of one to zero, whereupon an
interrupt is generated.

2.3/8 Interrupt Conirof

Channel 3 is operated in timer mode to generate the 20 ms
System Clock interrupt.

Channels 1 and 2 are not normally used for generating
interrupts since Channel 2 produces the baud rate clocks for
the RS232 interface, and Channel 1 provides the
fundamental frequency for the sound output.

interrupt Control Sequence

An interrupt request from either one of the controllers tells
the CPU that an interrupt service routine is being requested,
but not which interrupt service routine is required. To find
out, the CPU automatically performs an interrupt
acknowledge sequence, which provides an interrupt vector
_.from the appropriate Z80 controller,

Further information to find the actual cause of interrupt
when the vector indicates more than one possible source, is
obtained by reading registers within the appropriate
controller.

in the case of the Floppy Disk Controller (FDC) an interrupt
on the CPU’s NMI input causes a type 2 interrupt. The
associated service routine can then check the cause of the
interrupt by reading the FDC Status Register.

The FDC uses its Interrupt Request (INTRQ) output to signal
that a disk read, write or formatting operation has been
successfully completed, or to warn that an error condition
has occurred during a disk access.

Eull details of the conditions that cause the FDC to request
an interrupt are given in the chapter on the Floppy Disk
Interface.

in the case of maskable Interrupt Requests from the two Z80
controllers, the conditions which generate interrupts and the
interrupt sequence are as follows below.

Interrupt Control 2.3[/9

Maskahle Interrupts

The interrupt sequence described here applies to all the
maskable Interrupt Requests that can be generated by the
two Z80 controllers, the SIO and the CTC.

When an interrupt condition occurs, the Z80 controller pulls
its IEO (Input Enable Qut} output low, so as to inhibit lower
priority interrupts along the daisy chain. The controller then
pulls its INT output low to assert an interrupt request to the
CPU’s INTR {Interrupt Request) input.

The IEO output of the Z80Q CTC is not connected to another
device s0 it has no effect on the operation of the circuit. The
IEOQ output of the Z80 SIQ is connected to the [El input of
the Z80 CTC and thus inhibits the CTC until all Z80 SIQO
interrupts have been serviced.

The CPU acknowledges an interrupt request by issuing two
Interrupt Acknowledge (INTA) pulses. The 8086 interrupt
acknowledge sequence is translated into a Z80 style
interrupt acknowledge sequence by a series of logic gates.

The first INTA pulse causes the Z80 input M 1 {Machine
Cycle) to be pulled low. This acknowledges the interrupt
request, and causes both Z80 controllers to freeze all
current interrupt states so that the daisy chain can stabilise.

The second INTA pulse causes the Z80 input IORQ
(Input/Qutput Request) to be pulled low. This causes the
Z80 controller with the highest priority interrupt that is
currently queued along the daisy chain, to supply the
interrupt vector onto the data bus.

The CPU accesses the interrupt vector, and uses it as an
offset into the Interrupt Pointers Table in the bottom of
System RAM. The address of the entry in the Table is
obtained by multiplying the vector by four. Each entry in the
Table is a double word vector address which points directly
to the appropriate interrupt service routine, using the
standard 8086 addressing format. A list of the interrupt
vectors in order of decreasing priority is given in tablular
format below.

Z2.3[/10 Interrupt Controf

SI10 Channel A

Interrupt Type Input

Vector Pin Source

SEH Special Rx RxDA Keyboard data input

5CH Rx data RxDA Keyboard data input

58H Tx buffer empty TxDA Sound output

5AH External CTSA Printer BUSY/
NOT BUSY

5AH External DCDA RS232C control
input (DCD)

S10 Channel B

Interrupt Type Input

Vector Pin Source

56H Special Rx RxDB RS$S232C datainput

H4H Rx data RxDB RS$S232C datainput

50H Tx buffer empty TxDB RS232C data
transmitted

52H External CTSB RS232C control
input (CTS)

52H External DCDB RS232C control
input (DSR)

c7C

Interrupt Type Input

Vector Pin Source

60H Channel O TRGO Expansion bus

62H Channel 1 — Baud rate #

64H Channel 2 — Tone period =

66H Channel 3 — System Clock timer

* These interrupts are not usually enabled

The service routine can determine the cause of the interrupt
(if ambiguous) or find out more information on the interrupt
by reading status registers in the relevant controiler, For the
SIO, this is Read Register O or Read Regjister 1.

In the CTC, the Downcounter Register records how many
clock inputs have been counted since the last interrupt for a
zero count event. This is of value to the system clock
interrupt service routine to enable it to determine the exact
time of the system clock interrupt.

interrupt Controf 2.3[717

The interrupt service routine needs to reset the relevant bits
in the status registers, so that they are clear to record the
next interrupt. For the SIQ, this is done by writing a reset
command to Write Register O. For the CTC, a reset
command written to the channel's Control Register resets
the channel accordingly.

At the end of the interrupt service routine, a two-byte Return
From Interrupt (RETI) command, has to be issued to the two
Z80 devices to allow lower priority interrupts to be serviced.
The two bytes in the command are EDH, followed by 4DH.
EDH forces IEO high to enable all unacknowledged
nterrupts lower down the device chain. 4DH releases the
interrupt which has just been serviced.

The RETI sequence is generated by writing the two
command bytes in sequence to port 30H in the System
1/0O Space.

If a device or channel is currently being serviced by an
interrupt routine, then only devices or channels with a higher
priority along the daisy chain can interrupt it. Lower priority
interrupts are stored to await servicing when all the higher
priority routines are complete.

2.3/12 Interrupt Control

Vectoring data for the Z80 controllers is initialised by the
BIOS at system load time. Subsequently, the methods of
selecting and enabling interrupts are dependent on the
device generating the interrupt.

The FDC does not need to be initialised for interrupts. I
generates Non-Maskable Interrupt requests as a result of the
disk transfer commands that are issued to it.

The operation of the S10, port addresses, the method of
enabling and disabling interrupts, etc are all described in the
chapter on the Serial Interface. The operation of the CTC,
port addresses, the method of enabling and disabling the
various interrupts, etc are all described in the chapter on the
Timer. Full details of programming the FDC are given in the
chapter Floppy Disk Interface.

The philosophy of using Expansion Bus interrupts (via the
CTC) is detailed in the chapter on the Expansion Slot.

Since the interrupt structure is used extensively by the BIOS,
care is required not to disturb control settings that are
shared between the various interrupts that use the same
device channels. For example, the keyboard input and the
printer Busy line both use Channel A of the SIO.

It is also recommended that control settings should be
restored to their previous state after use by other
program routines.

interrupt Controf 2.3/13

Contents

Introduction
Details

General

Display Modes and Features
Display Architecture

Drive Signals

Circuitry

Display RAM

Palette RAM

Pointer RAM

Mode Selection

Refresh Control and Timing
Display Connectors

IHustrations

1. Display control schematic

2. 40 column bit-map

3. 80-column bit-map

4. Pointer RAM data

5. Display Word decoding — 40 column mode
6. Display Word decoding — 80 column mode
7. Display period timing

Display Controf 2.4]7

Emmzﬁmm

The display architecture of the Apricot F 1 is a slightly
different system to what is usually found on other
microcomputers. It is totally graphics oriented (i.e. based on
a bit-map instead of characters) and can also be software
configured for a number of different resclutions and modes.

The display circuitry can also drive a variety of different
display devices. These include:

1. An F1 colour monitor.

2. An F1 monochrome monitor.

3. A standard composite monitor.

4. A standard domestic colour TV (when fitted with the
optional TV modulator).

2.4/2 Display Control

General

The design of the display circuitry of the Apricot F 1 is based
on a bit-mapped architecture. There is no hardware
differentiation between text and graphics; everything is
pixel-based. i.e. A “dot” on the display screen is mapped by a
corresponding bit{s) in the display memory.

In other words, it does not matter whether the F1is
displaying text or graphics, the display circuitry treats them
hoth in an identical manner. This feature of the design makes
it easier for the programmer to mix text and graphics as
required.

The display memory is part of the system RAM and occupies
42 .5 Kbytes in the lower 64K. 40 Kbytes are allocated in the
system RAM to map out a pixel image of the display screen;
512 bytes are used to implement a series of 16-bit addresses
which form a pointer to map each display scan line {video
line pointers); 2 Kbytes are not normally used.

There is no high level CRT controller for generating display
timing signals and display address lines. These are instead
implemented by a variety of simple 74LS series components.

Display modes and features

The modes, resolutions and display features available to the
programmer provided by the display RAM are detailed in the
next few paragraphs. The resolutions described match the
resolutions of the current ACT colour and monochrome
monitors produced for the F1.

The F1 can be configured to drive either a colour or
monochrome monitor with the programmer having the
choice of displaying either 200 or 256 lines. The
programmer also has one further option, either using an 80
column/640 pixel mode or a 40 column/320 pixel mode.

In the 640 pixel mode, the programmer can display up to 4
colours simultaneously {from a choice of 16} on a colour
monitor, or up to 4 levels of greyscale if a monochrome
monitor is connected instead.

Display Control 2.4/3

In the 320 pixel mode, the programmer can dispiay up to 16
colours simultaneously on a colour monitor, or up to a
maximum of 8 levels of greyscale if a monochrome monitor
is connected instead.

The 320 pixel/40 column mode is the mode which produces
a sensible display output on a standard TV. {The relatively
low bandwidth of a TV compared with a video monitor does
not generally allow a sharply defined picture to be produced
in the 640 pixel modes).

Colour/greyscale selection is provided by a palette. Thisis a
small area of memory-mapped RAM which determines the
colour mix/grey levels at the display outputs.

Scan Line Modes

The 200 line modes have been implemented primarily for
USA usage and other countries using 60 Hz mains supply
frequency. The two 200 line modes as described previously
are:

1. 640 x 200 bit-mapped graphics using any 4 colours
from 16 (or 4 grey levels).

2. 320 x 200 bit-mapped colour graphics using 16
colours (or 8 grey levels}.

The higher resolution 256 line modes are for UK, European
and other countries using 50 Hz mains supply frequency and
are as follows:

1. 640 x 256 bit-mapped graphics using any four colours
from 16 (or four grey levels).

2. 320 x 256 bit-mapped colour graphics using 16
colours {(or 8 grey levels).

Fonts

A default font of 128 characters (based within an 8 x 8 pixel
cell) is contained in the system ROM. This is designed to be
used with the 200 line resolution modes.

Each character is mapped by eight contiguous byies in the
ROM. A second font of 256 characters {7 x 7 characters
based within an 8 x 8 pixel cell) is loaded into the system
RAM at boot-up. Support in the BIOS also allows other 8 x 8
user-defined fonts to be installed within the system RAM.
These can be easily accessed by simply modifying a font
pointer.

2.4]4 Display Controf

A second default font of 256 characters {7 x 9 characters
based within an 8 x 10 pixel cell) is loaded into the system
RAM at boot-up. This is designed to be used with the 256
line display modes. Each character is mapped by ten
contiguous bytes in RAM.

Support in the BIOS also allows other 8 x 10 cell
user-defined fonts to be installed within the system RAM.
These characters can also be easily accessed by simply
modifying a font pointer. The 8 x 10 based font is of a
greater resolution than the 8 x 8 based font for the 200 line
modes but is of an identical 256 character set. The basic
difference is in the construction of the characters, with lower
case letters generally having longer descenders.

To obtain a sensible and usable “text mode” on both the
colour display and monochrome display for existing text
based applications, the attribute support by the BIOS is only
allowed in “monochrome” on the colour monitor (i.e. any
two colours from the possible sixteen) and any two grey
levels on a monochrome monitor.

All the standard character attributes are availahle to the
programmer in these two modes. These are produced by
direct bit manipulation of the character image in the display
RAM. Both normal and reverse video characters are
supported with any combination of the following atfributes:

1. Underline.
2. Strikethrough.
3. Intensity {(simulated by shadow printing).

BlOS support for character attributes are not provided in the
multi-colour modes due to the inherent nature of the colour
display itself. {The same applies to the modes with more than
two grey levels on a monochrome monitor).

Since the only effect an attribute is used for is to differentiate
a character(s) from other characters, any of the standard
attributes can easily be represented by assigning attributes
to a different colour in a multi-colour mode {corresponding
to a different shade of grey on a monochrome monitor},
instead of the standard “monochrome” method.

Display Controf 2.4]5

Pointers

Sophisticated scrolling effects can be produced in the F1 by
simply altering the video line pointer data. This includes left
and right scrolling on character boundaries, and up and
down scrolling by a minimum increment of one video line.

Scrolling is implemented by simply re-ordering the video line
pointer data in the pointer RAM to access the appropriate bit
image to be displayed and repainting any new image in the
Display RAM as required, The video line pointers can also be
used to produce fast screen blanking. This is simply achieved
by modifying all the video line pointers to point to a blank line
of data.

A . N
{ SPSTEM DATA BUS
v ;
<
i [.
SYSTEM ADTRESS By +rte
i
TPy |
+ !
i
g
! 5 ey :
i o i
& :
= TRTAIN ;
T .
e ——— B
h 4 1oziseLay o h 4 DAl 14
- LK - _{f P,
i _— I Yoo [T g b
- 3] ’ X PALETTE
=8 Ay 1 - : — £ T el
i — g : h CECCDuMG ¥ T TM
GENTRATOA E : -m—— :
1 FOHYEE
* L RAM 4 DAt —P TN
““““ —— e v ErHT
bepn SYSTam pan — A
T ? e 3R COMMECTOR
4]
- - T o G
— £ PAS 45 £ il J
—_: = LATEM i
g B
-,I-,?N;E‘) g CEYHE —— oS W
ESLNTER ¥ N P |
L _MOLEX
F—— v 5rNZ vorNc— signa 5. CIRMECTLR
e L
L w1 s L syre —Pu FOMBRING e J
YY¥Y¥
=1L

SIGHAL . . COMPOSIT
COMEIHHG | O‘UIP‘EY £

AEFR 7Y ™
* RAS CAL

STAIE
COUNTER TIMING
AOM

Figure 1. Display Control schematic

2.4/8 Display Control

Drive Signals

The Display Control circuitry provides both the video drive
signals and the necessary synchronising pulses which
control the movement of the video beam across the screen,
to drive a variety of display monitors.

For colour monitors, the video signals are the digital IRGB
outputs with horizontal and vertical scanning controlted by
Lsync (Line Sync} and VSync respectively. These are supplied
via the 9-way D-type connector on the rear of the F 1.

For the F 1 monochrome monitor, the video signals are the
digital RGB outputs {1 is not decoded in the monitor due to
it’s inability to produce 16 greylevels with acceptable
differentiation). Horizontal and vertical scanning is
controlled by Lsync and VSync respectively. The signals are
supplied via the same 9-way D-type connector as used for
the colour monitor. The power for the monochrome monitor
(+ 17V rectified a.c.) is also supplied via a pin on this
connector.

The connection for a composite video monitor is the jack
socket on the rear panel of the F1. This provides a composite
video output consisting of a mixed video and sync signal,
composed by combining the digital RGB signals with Lsync
and Vsyng, to produce an analogue greyscale eguivalent. (As
with the F1 monochrome monitor, the | signal is not used,
with the result that only a maximum of 8 greylevels can be
displayed).

The display circuitry cannot directly drive a standard
domestic colour TV. This requires the optional TV modulator
to be fitted into the internal Expansion Slot. When fitted, the
TV modulator is supplied with the IRGB digital video signals
and a combined horizontal/vertical sync signal {CSync) via a
Molex connector. These are then converted into the
appropriate RF signal on the Expansion board prior to being
routed to the TV.

Display Control 2.4[7

Circuitry

The DisplayControl circuitry consists of the foliowing areas:

1. The Display RAM which holds the bit-image of the
screen (part of the system RAM).

2. Pointer RAM {also part of the system RAM). This holds
16-bit addresses of the start of each line of video data
stored in the Display RAM.

3. Various counters which are used to access the pointer
RAM data and the Display RAM data, cycle through
DRAM refresh addresses, generate horizontal and
vertical sync pulses for setting the rate at which the
video beam scans across the display, etc.

4. A pair of multiplexer/shift register stage which
re-arranges the video data accessed from the Display
RAM into a suitable code for driving the palette RAM.

5. The 16 x 4-bit palette RAM which translates the video
data from the Display RAM into the appropriate
colour/greyscale coded output.

6. The display output circuitry which converts the data
accessed from the palette into the appropriate display
sighal(s) for driving the various display monitors.

Associated with the various counters is a State Timing ROM.
This acts as a timing and control decoder. It is programmed
to send out repeated sequences of timing signals, which
control and coordinate the various accesses allowed to the
System RAM (display refresh, CPU, DRAM array refresh).

Coded information about each pixel of the display is stored in
the Display RAM with each scan line of video data
represented by a linear sequence of 80 words. The “80-word
video lines” are accessed by the programmer writing the
appropriate video line pointer data into the Pointer RAM. The
pointer equates to the address of the first word in each linear
sequence of 80 words.

The number of bits used to represent each “pixel” on the
screen is dependent on the mode selected. In 40 column
mode (320 pixels per line}, each “pixel” can be displayed in
any one of 16 colours. This is represented by a 4-bit code in
the system RAM. Each 4-bit code is translated into colour
coded pixel data via the palette RAM, The palette RAM
provides the programmer with the facility to translate the
4-bit code from Display RAM into any one of sixteen pixel
colours as reqguired.

2.4/8 Display Controf

In 80 column mode {640 pixels per line}, each “pixel” can be
displayed in any one of four colours from 16. This is represented
by a 2-bit code in the system RAM. Each 2-bit code is translated
into colour coded pixel data via the palette RAM. The
programming of the palette handles the translation of the 2-bit
code into the appropriate display pixel colour required.

The palette in the 80 column mode has to be programmed in
a slightly different way than in the 40 column mode. As only
two bits in the screen RAM are available to map each pixel in
this mode, the code can only sucessfully represent one of
four colours.

The palette has 16 entries which can be programmed with
any 4-bit value. The programmer restricts the cutput of the
palette to one of four available colours by selecting four
different values and programming blocks of four entries in
the palette to the same value (in effect masking out invalid
entries in the palette).

In the 40 column mode, no such restriction is placed on
programming the palette as the 4-bit code from the Display
RAM can be used to represent any of one of the available
16 colours.

From a descriptive point of view, the display circuitry can be
broken down into a number of different areas as detailed
below. This division is purely a convenient way of describing
how the circuitry is programmed. Each area of circuitry is
expanded upon in further detail in the following pages.

1. Display RAM

2. Pointers

3. Palette RAM

4. Mode Selection

Display RAM

The display RAM is allocated to 42 Kbytes in the bottom 64K
of System RAM. The start address is at 02000H, and
stretches through to OC7FFH. The maximum number of
bytes to map a full screen of video data is 40 Kbytes (256
fine mode).

Display Control 2.4[8G

Memory Planes

The display memory organisation for driving the various
display outputs is based upon a system of memaory planes.

A plane is a general term for a block of memory in the display
RAM. The number of planes in the system equates to the
number of bits required to map each display pixel on the screen.

The planes in the F 1 are not separated into contiguous areas
in memory, but are interleaved at bit level within words.

Organisation of the memory into planes is entirely dependent
on the mode selected. in the 540 pixel (B0 column mode),
the Display RAM is split into two planes.

in the 320 pixel (40 column mode), the Display RAM is split
into four memory planes.

The display circuitry is programmed to regularly access a
word of data from the Display RAM, as the raster scan on
the display is in progress {i.e. the active display period).
The display word accessed contains data from:

1. Both planes in the 640 pixel mode and represents
8 pixels.

2. All four planes in the 320 pixel mode and represents
4 pixels.

It is supplied via a multiplexer/shift register stage {formed by
a pair of latches and two 4-hit shift registers) to the colour
palette.

Usage of the planes is entirely dependent on how many
colours or grey levels the programmer wishes to display on
the monitor. {Note: The two terms colours and grey levels
are generally interchangeable as it depends only on the type
of monitor connected. This applies to all situations apart
from the 16 colours in the 320 pixel mode. The circuitry
within the display/on the board restricts the maximum
number of grey levels to 8, but allows 16 colours).

16 colours requires 4 planes, 4 colours requires 2 planes, 2
colours {(monochrome) requires a single piane. Ali other
intermediate number of colours require the higher number
of planes (e.g. 3 colours requires 2 planes). Masking out
planes not in use is achieved by programming the palette
accordingly.

2.4[/10 Display Controf

40 column bit-map

In the 40 column mode, there is enough display RAM
provided to allow the programmer to use 16 colours — i.e.
four planes. Bits from each plane are extracted from each
display word to form 4-bit code sequences to map each
pixel. (Each video line consists of 320 pixels, with four bits
mapped per pixel to produce the 16 possible different colour
states. In the 256 line mode, the number of bits required to
map the screen is therefore 320 x 4 x 256 bits = 40 Kbytes).

The four planes are aligned on alternate 2-bit boundaries in
the display RAM. Each display word accessed, maps four
pixels on the display screen. This is Hlustrated in Figure 2.

DISPLAY WORD i DISPLAY WORD h q DISPLAY WQRD B
¢ ADDRESS N ADDRESS N+02H A 5o

DDRESS N+04H
DiE DO DiS .

(5113211098 7654 32 1 014131211088 765432 1 o|umn P08 876 54321 0]

TLE _il_’_H__FI__FI__II__II;__H_ |_|_I|_I_l A A Y N | N [N Sy A |

v Y ¥ ¥ ¥ ¥ ¥ ¥ ¥ Y ¥ l _ _
T T~ T T
VIDEDSCANLINE[o . -ia slo|la|a|w]|s}|alala]|aal bl
T T T Tt
pixel pixel pixel | pixel pixel | pixel pixet
1 3 5 7] 11 13
prxel pinef pixel pixel pixel pixel pixel
2 4 6 8 10 12 320

plane 1 bits |15 1311

plare 2 bits |14 12|10
pltane3bits | 7 { 5| 3

Q| | oW

planedbits [6 | 4 | 2

Figure 2. 40-column bit-map

Display Control 2.4]11

80 column bit-map

in the 80 column mode, there is only enough display RAM
provided to allow the programmer to use 4 colours — i.e.
two planes. Bits from each plane are extracted from each
display word to form 2-bit code sequences to map each
pixel. (Each video line consists of 640 pixels, with two bits
mapped per pixel to produce the 4 possible different colour
states. In the 258 line mode, the number of bits required to
map the screen is therefore 640 x 2 x 256 bits = 40 Kbytes).

The two planes are aligned on 8-bit boundaries in the display
RAM. Each display word accessed, maps eight pixels on the
display screen. This is illustrated in Figure 3.

e DISPLAY WORD ’l ‘ DiSPLAY WORD P DISPLAY WORD ,1
o1 ADDRESS N ADDRESS N+0O2H o0 DIS ADDRESS N +04H
[15541312131I0 88 7654 3 2 1 o[:smxasznmg B7654 32t 0614131211100 B 7654 321 ul

‘I' d a]

‘F v

rv Y 1’“’17 vy ‘F‘F‘r‘f
ViDEUSCANLINEl | | |0I. oleiafafnlnln]s .E. slafaJaajaTa]s .Il e Tel

TTTTTTTTTTTTTTTTTTTTTTTT o

7

Secanlinepixel 1 2 34 5 6 7 B 91011121314 15161718192021222328 ... 64D

plane 1 bits [15 (141312 (11|10} 9
plane 2 bits 716|854 (321

Figure 3.80 column bit-map

2.4112 Dispfay Controf

Pointer RAM

The function of the Pointer RAM is to hold the start address
of the first display word in each linear sequence of 80 words
in display RAM, which are used to map each video scan line
on the screen. The pointer RAM consists of 512 byte (256
words) in System RAM starting at address location 0 1EQOQH.

It can be regarded as a simple 256 entry pointer table, with
one word per entry. All 256 entries are used in the 256 line
scan mode. In the 200 line scan mode, only the first 200
entries are ever accessed.

The “80-word video lines” are accessed from the appropriate
areas in the display RAM by filling the entries in Pointer RAM
with the appropriate video line pointer data.

The first entry in the table points to the data to map the first
video scan line. The second entry points to the data to map
the second video scan line. The third entry points to the third
line, the fourth entry to the fourth line, etc. The entries in the
table are accessed by an address generated by a hardware
controlled Video Line Counter.

At the end of each frame period, the Video Line Counter is
automatically reset to point to the first entry in the pointer
table. At the end of each active scan line {during the line
blanking period), the Video Line Counter is automatically
incremented to point to the next entry in the pointer RAM
table.

During each frame period the following sequence of events
takes place.

Prior to the start of each active line display peried, the
pointer data at the location specified by the Video Line
Counter is accessed from the pointer RAM and is used to
preset a second set of counters {termed the Display Address
Generator).

The outputs of the Display Address Generator are used as
the address for each display word stored in the display RAM.
During the active display period everytime a display word is
accessed, the Display Address Generator is automatically
incremented to point to the next display word in the
“80-word video line” sequence.

Display Control 2.4/13

At the end of each scan line, during the line blanking period,
the Video line counter is incremented. This new address is
then used to access the next entry in the pointer table. The
data accessed from the pointer table is then used to preset
the Display Address Generator to point to the start address
of the first display word in the next 80-word video line
sequence.

This cycle continues throughout the whole of the active
frame period. This equates to a 200 active line sequence in
the 200 line mode; a 256 active line sequence in the 256
line mode.

Each entry in the pointer table locates the start of an
80-word video line sequence. Each “80-word video line”
sequence may be contiguous areas of display RAM or in any
other order as specified by the pointer data.

The 16-bit data in the pointer RAM does not equate to the
absolute address of the first display word in each “80-word
video line” sequence. The translation from the Display
Address Generator to the multiplexed address lines for the
RAM in effect produces a shift of one significant bit (the
pointers access a whole word always requiring address bit O
— AOQ to be set low). This translation is illustrated in Figure 4.

The use of pointers makes it extemely flexible and easy for
the programmer to perform text support features such a
scrolling, screen blanking, etc.

Since the pointers point to a display word which represents a
character width in 80 column mode (8 pixels), functions
such as left and right screen scrolling can easily be performed.

For example to scroll a basic 80 x 25 text image one
character to the left, all the programmer has to do is
increment all the pointers by one word value and update the
new display word which appears at the end of each 80-word
video line.

Up and down scrolling is simply achieved by shifting entries
upwards or downwards through the table and repainting
each "new"” 80-word video line as required. The minimum
allowed change for scrolling is one scan line.

2.4/14 Display Contro/

256-W0ORD

FOINTER RAM
ADDRESS DATA
01ECOH i000H
— — DISPLAY RAM
O1EO4H WAOH [
| | ADDRESS DATA
| | L 02000K | DISPLAY WORD 1/VIDEOLINE 1
DAFFEH SFFFH |—= 0200ZH [OISPLAY WORD 2/VIDEQ LINE 1
02004H | DISPLAY WORD 3/VIDEO LINE 1
02006H | DISPLAY WORD 4/VIDEQ LINE 1

Q209EH DISPLAY WORD BO/VIDEQ LINE 1

b Bl £2040H DISPLAY WORD 1/VIDED LINE 2

Q20A2H DISPLAY WORD 2/VIDEQ LINE 2

020A4H DISPLAY WORD 3/VIDED LINE 2

]
|
|
]
—————] 02140H | DISPLAY WORD 1/VIDEC LINE 3

021424 DISPLAY WORD 2/ViDEO LINE 2

1
|
| |
;

’- QBFFEH DISPLAY WORD 1/VIDED LINE 255

OCDAJH DISPLAY WORD 2/VIDED LINE 258

] ! 1
1 i J

Figure 4. Pointer RAM data

Palette RAM

The palette is formed by a 16 x 4-bit static RAM, which is
mapped into the system memory address space on word
boundaries (even addresses) starting at EQOOOH. It can be
regarded as a simple 16 entry table with 4-hits (LSB} active
per entry.

The function of the palette is to translate the information
from the planes into the colour coded IRGB outputs. s
dual-ported being continuously accessed by the data from
the planes and is accessed by the programmer for setting up.

Display Control 2.4/15

The colours produced by programming the palette with a
particular 4-bit value are as detailed below. (Note: The
palette data output lines are wired in the following order; the
LSB data line — DO to the Intensity output line; the next line
— D1 to the Red output line; the next line — D2 to the Green
output line; the MSB data line — D3 to the Blue output).

Palette Display Qutputs Colour
data B G R |

O0OH 0 O O 0 Black

O1H 0 O O 1 Darkgray
02H 0O 0 1 0 Red

03H 0O O 1 1 Lightred
04H O 1 0O O Green

O5H O 1 0 1 Lightgreen
06H O 1 1 0 Brown
Q7H O 1 1 1 Yellow

O8H i 0 O O Blue

0SH 1T 0 O 1 Lightblue
OAH 1 0 1 0 Magenta
OBH T 0 1 1 Lightmagenta
OCH 1 1 0 O Cyan

ODH 1T 1 0 1 Lightcyan
OEH 1 1 1 O Lightgray
OFH T 1 1 1 White

40 column mode

In the 40 column mode, the programmer masks out the
planes not in use and also selects the colours for display by
programming the palette.

The translation of the data from the planes to colour-coded
IRGB outputs is done by feeding the 4-bit parallel code
sequence from the display RAM via a multiplexer/shift
register stage to the four address inputs of the 16 entry
palette RAM.

2.4(16 Display Conirof

The function of the multiplexer/shift register stage is to sort
the accessed display word into the correct 4-bit sequences
to represent the display pixels (i.e. bits 15, 14, 7, 6 — first
pixel; bits 13, 12, 5, 4 — second pixel; etc, see Figure b}.

ACCESSED 218 oo
DISPLAY (1614131211109 87 6 54 3 2 1 o)

WORD
l |

MULTIPLEXER/
SHIFT REGISTER

PLANE1} @ [11 |13 [18 [——| A3 DO | P |
B

PLANE2] B8 [10]12 |14 A2 Lo erre D —P R

PLANE3| 1 | 3] 6 | 7 [———— A1 RAM o — b

PLANES| O |2 | 4 | 8 [—P{ A0 03| ——Pp- B

Figure 5. Display word decoding — 40 column mode

Data from plane 1 is supplied as the MSB address bit (bit 3}
of the palette RAM, plane 2 data is supplied as address bit 2,
plane 3 as address bit 1, and plane 4 as the LSB address bit
(bit Q).

The 4-bit values programmed into the table set the colour
selection at the output. If the programmer wants to mask out
a plane (or planes), he does this by programming some of the
entries in the palette with the same value. The entries which
are programmed for masking are entirely dependent on the
planes used for the colour display data. '

This process of programming the palette is best illustrated by
providing a few examples.

Display Control 2417

fn order to display the full 16 colours on a colour monitor, all
sixteen entries within the palette have to be programmed
with different data, and all four planes filled with display data
for driving the monitor.

The following table illustrates the required values for
producing a full 16 colour display and the corresponding
codes in the planes which address the entry in the palette.

Palette Palette Plane Colour
Address data Coding
base offset+ BGRI 1234

00 0000 0000 black
02 0001 0001 dark grey
04 0010 0010 red
06 0011 0011 light red
08 0100 0100 green
OA 3101 0101 light green
oC 0110 0110 brown
Ok 0111 0111 vyellow
10 1000 1000 blue
12 1001 1001 light blue
14 1010 1010 magenta
16 1011 1011 light magenta
18 1100 1100 cyan
1A 1101 1101 light cyan
1C 1110 1110 light grey
1E 1111 17111 white

* Address — EQOOOQOH + offset

The programmer does not have to program the palette to
this colour selection, but can map them in reverse sequence
or in any other permutation as required.

The main advantage of the mapping shown in the table
above is that the translation from display data written into
the 4 planes to the codes on the IRGB outputs, is a
straightforward one to one relationship. Plane 1 data directly
affects the state on the blue output line; plane 2 data affects
the state on the green output ling, etc. The 4-bit code
accessed from the four planes therefore directly correspond
to the codes on the IRGB outputs.

24718 Display Control

For an 8 colour display using planes 1, 3, and 4 only and
masking out plane 2, the programmer has to program the
palette using eight different values only, repeating each value
twice in certain positions within the palette table.

An example to llustrate the entries that have to be
programmed with the same value to mask out plane 2 is
detailed below. The actual colour values chosen are an
arbitrary 8 from the 16 available.

Palette Palette Plane Colour
Address data Coding Output
base offset BGRI 1234

00 1111 0000 white

02 0001 0001 dark grey
04 1100 0010 cyan

06 0011 0011 light red

08 1111 0100 white

OA 0001 0101 dark grey
0C 1100 0110 cyan

OE 0011 0111 lightred

10 1000 1000 blue

12 1001 1001 light blue
14 1010 1010 magenta
16 0000 1011 black

18 1000 1100 blue

1A 1001 1101 light blue
1C 1010 1110 magenta
1E 0000 1111 black

If you examine any two values which are programmed to the
same colour value in the table above, you will see that the
plane coding entries are the same apart from the third bit.
This is the address line (A2) which is driven by the bit stream
from plane 2.

The effect produced by placing the same colour vatue in this
sequence is that any change of state made to data in plane 2
will be totally ignored. It is only the other planes which will
produce a colour change as the bits from the planes change
state. Changes to bits within plane 2 therefore will always be
in effect ignored, always producing the same colour output
irrespective of the state of the data stored. :

Display Control 2.4]/19

i

1o produce a monochrome display on the colour monitor,
the palette has to be programmed with eight values
specifying one colour and eight values specifying the other
colour. The order which the values appear in the table
depends on the plane assigned to store the display data.

An example of programming the palette using plane 1 for a
monochrome output is illustrated below.

Palette Palette Plane Colour
Address data Coding Qutput
base offset BGRI 1234

00 1111 0000 white
02 1111 0001 white
04 1111 Q010 white
06 1111 0011 white
08 1111 0100 white
OA 1111 0101 white
OC 1111 0110 white
OE 1111 0111 white
10 1000 1000 blue
12 1000 1001 blue
14 1000 1010 blue
16 1000 1011 blue
18 1000 1100 blue
1A 1000 1101 blue
1C 1000 1110 blue
1E 1000 1111 blue

This will produce a white pixel everytime the bit is not set in
plane 1 and a blue pixel when set {i.e. equating to a blue on
white display).

To utilise plane 4 as the monochrome display every second
entry in the palette is programmed with the same colour
value; e.g. 00, 04, 08, etc for one colour; palette entries 02,
06, OA, etc for the second colour. Both plane 2 and plane 3
can be used in the same manner, varying the programming
of the palette accordingly.

Any combination of the 2 colours from 16 can be assigned
to the colour monitor, by programming the palette with
different values to produce a whole range of monochrome
screens.

A]20 Display Conirof

2-plane mode

In the 80-column mode, the programmer masks out the
planes not in use, selects the colours for display and restricts
the colour selection to four out of the possible sixteen by
programming the palette.

The transliation of the data from the 2 planes to colour-coded
IRGB outputs is done by feeding the 2-bit parallel code sequence
from the display RAM via the multiplexer/shift register

stage to the address inputs of the 16 entry palette RAM.

The function of the multiplexer/shift register stage is to sort
the accessed display word into the correct 2-bit sequences
to represent the display pixels (i.e. bits 15, 7 — first pixel;
bits 14, 6 — second pixel; bits 13, b — third pixel, etc, see
Figure 6).

Display Control 2.4/27

The action of the multiplexer/shift register stage is to always
present a 4-bit code sequence to the address inputs of the
palette. Only two bits are valid, the other bits are the code
for the next “pixel” and are therefore invalid codes until
shifted through the register.

Data from plane 1 is supplied as the MSB address bit (AB3)
of the palette RAM, plane 2 data is supplied as address bit 1
(AB1}. The entries in the palette have to be programmed so
that whatever logic state appears on the other two address
lines as data is shifted through the register, they do not affect
the colour selection on the colour coded output lines.

ACCESSED D1° iy
DISFLAY ~ [1514131211100 8 7 6 54 3 2 1 0}
WORD l E

l

MULTIPLEXER/
SHIFT REGISTER

pLANEt| B | 9 [to |11 |12 |13} 14 | 15 [P A3 0o [——P» |
—>
NVALID | X | x [x [x| x| x| x| x A2 L e DO e
RAM
PLanez| o | 1 | 2|3 a8)6 |7 |—Pial D2 | i G
INVALID | X [x| x [x| x| x| x| x|—| a0 03| —P 5

Figure 6. Display word decoding — 80 column mode

The programmer masks out these address lines by
programming some of the entries in the palette with the
same value. These entries are:

Plane Palette Location
Coding Offset (hex)
P1 P2

O O 00 02 08 O0A
O 1 04, 06, 0C, OE
1
1

0O 10, 12, 18, 1A
1 14, 16, 1C, 1E

2.4{22 Display Controf

This process of programming the palette is best illustrated by

providing a few examples.

An example of programming the palette (and the
corresponding codes required in the two planes to use four
colours) is illustrated below. The actual colour values chosen
are an arbitrary 4 from the 16 available.

Palette Palette Plane Colour
Address data Coding Output
base offset BGRI P1 P2
Q0 0111 O 0 vyellow
02 0111 0O O vyellow
04 0010 O 1 red
06 G010 0 1 red
08 0111 0O O vyeliow
OA 0111 0 O vyelow
0C 0010 0 1 red
OE 0010 0 1 red
10 1000 1 O blue
12 1000 1 0O blue
14 1111 1 1 white
16 1111 1 1 white
18 1000 1 0O blue
1A 1000 1 0O blue
1C 1111 1 1 white
1E 1111 1 1 white

Display Control 2.4[23

An example of programming the palette using plane 1 for a
monochrome output is illustrated below.

Palette Palette Plane Colour
Address data Coding Output
base offset BGRI P1 P2

00 1111 0 0 white
02 1111 Q 0 white
04 1111 0 1 white
06 1111 0 1T white
08 1111 Q0 0O white
0A 1111 0 O white
QC 1111 0 1 white
Ok 1111 0 1 white
10 1000 1 0O blue
12 1000 1 0 blue
14 1000 1 1 blue
16 1000 1 T blue
18 1000 1 0O blue
1A 1000 1 QO blue
1C 1000 1 1 blue
1E 1000 1 1 blue

This will produce a white pixel everytime the bit is not set in
plane 1 and a blue pixel when set (i.e. equating to a blue on
white display).

To utilise plane 2 for the monochrome display every second
pair of entries in the palette is programmed with the same
colour value; e.g. 00, 02, 08, 0A, 10, 12, 18, 1A for one
colour; palette entries Q4, 06, OC, OE, etc for the

second colour.

Any combination of the 2 colours from 16 can be assigned
to the colour monitor, by programming the palette with
different values to produce a whole range of monochrome
screens.

Mode Selection

The control signals which set the display modes are provide
by a pair of bit-wide control poris mapped in the System [/0O
space. They control the selection of:

1. 200 or 256 scan line mode.
2. 640 pixel {80 column} or 320 pixel {40 column) mode.

24124 Display Controf

The scan line mode port is located at /O address location
O7H and is wired to the LSB data line on the high order
section of the system data bus (D8). Writing OOH to the port
selects the 200 scan line mode; writing FFH to the port
selects the 256 scan line mode.

The column mode port is located at 1/0 address location
0O9H and is wired to the LSB data line on the high order
section of the system data bus (D8). Writing O0OH to the port
selects the 40 column mode; writing FFH to the port selects
the 80 column mode.

The output line from the scan line mode port is wired to the
Video Line Counter circuitry. It's effect is to:

1. Determine the number of addressses generated by the
Video Line Counter during the active line period {200
or 256).

2. Set the frequency of the vertical sync pulse {(VSync})
and vertical blanking waveforms to match the required
scan mode (200 line — 60 Hz, 256 line — 50 Hz).

The output line from the column mode port is wired to a
counter {via a NOR gate) in the video output driver stage. It's
function is to control the rate at which changes occur on the
IRGB colour coded outputs. In the 80 column mode (640
pixels per line), the maximum rate at which the lines can
change state during the active display period (the pixel clock
rate}is 14 MHz. In the 40 column mode (320 pixels per
line}, the rate is halved to 7 Mhz.

Refresh Gontrol and Timing

Video control signals

The two output signals LSync and VSync, are generated to
control the raster scanning across the screen display. They
are synchronised with the various timing and control signals
used for accessing the video data from the RAM.

LSync controls the horizontal scanning movement of the
video beam, Vsync controls the vertical movement. Besides
being supplied as separate signals to the 9-pin D-type
connector, LSync and VSync are also combined to produce
an interleaved line and frame sync waveform (CSync). Thisis
supplied to the connector for the optional modulator and is
mixed with a video greyscale signal to form a composite
video waveform. '

Display Control 2.4]/25

As the beam scans across the screen (during the active
display period), the display outputs modulate it's behaviour
and intensity so as to display pixels in the form as specified
by the display data.

Two associated video timing signals are also produced on the
board, a line blanking signal and a frame blanking (vertical
blanking signal) — see Figure 7.

These are combined to produce a mixed blanking waveform.
This is supplied to the counter in the video output stage. It's
effect is to clear the display output lines (IRGB) to zero state
during the blanking periods. lt is also supplied as an address
line to the state timing ROM for determining the allowed
access cycles to the system RAM.

E: B I

L
- fH
E“-— LINE BLANKING T ACTWE DISPLAY PERIQD (45 7ua) 4—.1
Fy
e B0 pixels — B0 ool maode
— AZ0 pirels — 40 column moda -
DRAM REFRESH
AND
POINTER ACCESS
{16 REFRESH ACCESSES, ACTIVE DISPLAY AREA
32 POSSIBLE CFU {80 TV ACCESSES DURING EACH AGTIVE LINE PERIOD,
ACCESSES} 40 POSSIBLE CPU ACCESSES), 200/256
.ug ACTIVE
ao DISPLAY
o= LINES
b
w2
25
-
28
bl
28
e
¥
55 LINES BLANKING—
[YEATICAL BEANEKLNG PERIIDY 66 LINE MOOE
B0 LINES BLANKING —
200 LINE MODE

Figure 7. Display period timing

2.4]26 Display Contro!

RAM Access Control

Various timing signals are produced on the board for
co-ordinating and controlling accesses to the system RAM.
These are synchronised to the video control signals and are
derived from the basic on-board clock frequency of 14 MHz.

The timing signals are generated by a number of counters
and a state timing ROM. This is nothing more than a 32 x
8-bit ROM programmed to act as a decoder. lts address
inputs are derived from a 4-bit binary counter and the mixed
display blanking waveform. It produces a series of pulse
outputs throughout the active and blanking display periods
fo: _ . S

1. Generate the display refresh cycle.

2. Produce RAS and CAS pulses for latching addresses
into the system RAM array.

3. Control all accesses to the RAM by generating the
necessary control signals for enabling the various
address multiplexers.

4. Determine when the CPU is allowed access to the
system RAM.

5. Generate the DRAM refresh cycle.

6. Control the latching of data through to the palstte
RAM.

What process has access to the RAM is dependent on the
period of the display cycle. During the active line periods, the
display refresh cycle and the CPU are allowed access. During
the blanking periods, the DRAM refresh cycle, the video line
counter and the CPU are allowed access.

During the active line period, the display refresh cycle is
guaranteed 80 accesses to enable 80 display words to be
extracted from the display RAM for mapping each video
scan line. CPU accesses have to be interleaved between the
display accesses (TV accesses) and are only allowed when a
display access is not in progress. A maximum of 40 CPU
accesses are allowed in each active display period.

Any attempt by the CPU to access the RAM during a display
word access causes a number of wait states to be
automatically inserted to extend the CPU access time until
the display access is complete. Wait states are inserted by
the display circuitry driving the RAM Ready line low which is
wired to the wait state control logic.

Display Control 2.4/27

A minimum of one wait state is always automatically inserted
on all CPU access (without driving the RAM Ready line). This
can be extended to a maximum of 3 if a display cycle is in
progress.

Each display word accessed takes eight 14 MHz clock cycles
to clock the pixel codes through to the dtsp!ay outputs. The
time taken to decode two Display Words is therefore sixteen
14MHz clock periods.

Each display word access from the RAM takes five 14 MHz
clock cycles. Two display words take ten clock cycles. There
is therefore time for three RAM accesses during the time it
takes to decode two Display Words; two display word and
one CPU.

This access sequence is determined by the State Timing
ROM to give the two display word accesses, with a CPU
access time slot {five clock pulses) aliowed in between {i.e.
TV CPU TV}. Each of these ““three-access” cycles includes an
extra unallocated clock cycle, taking a total of 16 clock
cycles in all.

The interleave sequence throughout the active line period is
therefore; TVCPU TV, TVCPU TV, TV CPU TV, etc. During
the period of each scan line there are 40 sequences of
“three-access” cycles (80 guaranteed TV accesses, with 40
possible CPU accesses).

During the blanking periods, the DRAM array has to be
refreshed and the Video Line Counter allowed one RAM
access to enable the pointer data to be loaded into the
counters which generate the addresses for each 80-word
video line sequence.

A maximum of 32 CPU accesses can be interleaved between
the DRAM refresh and video line counter access cycles
during the line blanking period.

Any attempt by the CPU to access the RAM during a DRAM
refresh cycle causes a number of wait states to be
automatically inserted to extend the CPU access time until
the DRAM referesh is complete. Wait states are inserted by
the display circuitry driving the RAM Ready line low which is
wired to the wait state control logic.

A minimum of one wait state is always automatically inserted
on all CPU access (without driving the RAM Ready line). This
can be extended to a maximum of 3 if a DRAM refresh cycle
1S In progress.

24128 Displav Control

The DRAM array requires a RAS only refresh cycle to
maintain the data stored within the RAMs. The refresh
addresses are supplied via counters and a multiplexer.

Each line blanking period takes 256 clock cycles. 16 refresh
cycles are allocated in this period so that the whole RAM
array is refreshed within eight line blanking periods

(i.e. 128 RAS refresh cycles). This takes approximately 0.5 ms,
well within the required refresh limit.

The last DRAM refresh access in the blanking period (i.e. just
befare the start of the active line period) is used to access
the pointer data from the RAM.

A single DRAM refresh cycle/video line counter access takes
five clock cycles. The other clock cycles in each blanking
period are allocated to CPU accesses, using the interleave
sequence: CPU REFR CPU, CPU REFR CPU, etc.

This access sequence is determined by the State Timing
ROM to allow two CPU accesses (five clock pulses each),
with a DRAM refresh access time slot {five clock pulses)
slotted in between {i.e. CPU, REFR, CPU}. Each of these
“three-access’ cycles includes an extra unallocated clock
cycle, taking a total of 16 clock cycles in all.

Dispiay Connectors

F1 monitors

Both the F 1 colour monitor and the F1 monochrome
monitor connect to the F 1 via the 9-pin D-type connector
located on the rear of the Systems Unit. They are supplied
with colour encoded video signals, and horizontal and
vertical sync pulses.

The colour monitor is powered directly from it's own supply.
The F1 monochrome monitor takes + 17V rectified a.c.
from the System Unit via the 9-pin D-type connector. This is
only present when the F1 monochrome monitor supply unit
is plugged into the two-pin socket on the rear of the Systems
Unit and the F1is powered on. (The + 17V supply is
switched through to the D-type connector via a relay
controlled by the presence of the + 5V supply on the System
Board).

Display Control 2.4/ 29

The connections to the connector are detailed helow.

Pin Description

1 Not Connected for F1 Colour Monitor

17 Volts a.c. for F1 Monochrome Monitor
R

|

Horizontal Sync {(LSync)

Vertical Sync (VSync)

Frame Ground

G

oV

B

OO LEWN

Both Sync signals are at standard, positive TTL levels. The
frequency of the Horizontal Sync pulses is 15.625 kHz; the
frequency of the Vertical Sync pulses is either 50 Hz or 60
Hz, depending on the scan line mode selected.

All the video control signals, Intensity, Red, Green, and Blue
are at standard TTL levels.

Composite monitor

A jack socket for a coax cable is provided at the rear of the
System Unit for connecting a composite monitor.

The composite video signal is produced by combining the
colour coded signals RGB with the combined sync signat {at
the base of the transistor Q3). A resistive combining network
is used to mix the RGB signals. The combined sync signal is
produced by mixing horizontzl and vertical sync pulses.

The composite video signal output has a peak-to-peak
voltage of 1.0 V. The sync pulses have a pulse amplitude of
0.17 V.

Domestic TV

A standard domestic television receiver can be connected to
the F1 as a display screen but requires an optional modulator
board to be fitted into the Expansion Slot. Connection to the
TV aerial socket is then made via a socket on the modulator
board and associated cable.

The input signals to the modulator are supplied from a
5-pin Molex connector (HDB), which is mounted on the
System Board.

2.4/30 Display Cantro!

The connections are as detailed below.

Pin Description

1 Composite Sync {CSync)
2 B

GO W
—3oom

All the video control signals, IRGB and CSync are at standard
TTL leveis.

Display Control 2.4/37

Contents

Introduction

Details
General
Expansion Slot
Expansion Connector
Electrical Specification
Pin Detail
Address Allocation
Using Interrupts
Expansion Board Layout

lllustrations

1. Expansion Bus schematic
2. Expansion Slot

3. Expansion Connector

4. Expansion Board Detail

Foud

Expansion 2.5]7F

ey

Introduction

The F 1 has two expansion connectors, which enable it's
basic processing system to be extended.

One connector is located internally within the F1 Systems
Unit and has been designed {o take a standard ACT
Expansion Board. The second connector is accessible from
the right hand side of the F1 Systems Unit and is designed to
fink in an external Expansion Unit.

To differentiate between these two connectors in the
following description, the internal connector is referred to as
the Expansion Slot. The externally accessible connector is
referred to as the Expansion Connector.

A high degree of compatibility has been maintained with the
other products within the Apricot range of computers. This
is such that all existing ACT Expansion Boards (Winchester
Controller, Modem, BAM cards, etc) can be used with the F 1
without any modifications to the Expansion Board hardware.

2.5/2 Expansion

Details

General

The internal Expansion Slot and the external Expansion
Connector are tracked onto the System Board. The block
diagram (Figure 1) shows how the System Bus and other
control ines are wired to the Expansion connectors.
They consist of:

1. The 16-bit System Data Bus.
2. The 20-bit System Address Bus.
3. Various contral lines for interrupts and data transfers.

4. Power supply output{s}.

n
kS

TamI - [
osc Ll
H o}
~.
!
i 13 ERHz
«+
FJLSE
wtn fll— - 4 acre |-]
3 £3cCIn GEHERATCA] o
o
—l_’ 1 1
!] 2
1 4 .
[Z]v) S, r
: Fl z 4= -
1 e 1 »
FF ; Z3
. . & .
—| i :
1!'_;. . : e
" i o A >
z
E A
JEN] i
7Ty I I
»oo 1 g
and Py
T Al o
aps JiraTRESS OATA BUS oH ACDRESS BUS
BHE =
| 2
> H { carapus
........ — !S':, +
]
nzs Sz
€T
4 z
!
SYRIEM S
IEsEr -

Figure 1. Expansion bus.

ALE

A0 D AR
G-E

CO Ty

FIISAREIN CIRNESTORS

Expansion 2.5/3

Expansion Slot

The internal Expansion Slot is the same physical connector
as used on other Apricot products (pc/xis and Portables).
This is a 64-way connector (DIN 41612, 2 by 32 female,
with a type B housing}).

Of the 64 connections routed to the slot, 59 are compatible
connections with the other products in the Apricot range
mentioned above. There are minor differences in detail in
these compatible connections. For example, the 15 Mhz
clock output on the pc/xi corresponds to 14 MHz onthe F 1
(see Figure 2).

The connections that are substantially different are also
marked on Figure 2. The main area of differences are:

1. There are no DMA facilities available on the F1 as
provided on the pc/xi range of products.

2. The 8086 NM! line is not routed to the slot on the F 1
since it is used within the system for disk transfers.

An Expansion plate on the rear panel of the F1 can be
removed to allow external connections to be made to
Expansion Boards fitted into the Expansion Slot.

2.5/4 Expansion

Expansion Bus

B SIDE A SIDE
PINS Q PINS
VY I
—12v 32 ||go||l—32 +12v
+5V B |l go (-3t ——+8v
DBO _._...30. on ||--—30..._DB1
082 .29 ||pon||—-29_—_DB3
oea 28 (|0 ||—28—DBS
DB6 271430 {|- 27.__DB7
ABI1D 26 |1y {|——26_ABD
ABI1 .25 |top{|——25 AB1T2
AMWC 24 __ || o0 ||-——24 ——MRDC
NG 23 0 .23 DT/R
NG 22 i ||——22—.._iORE
MWiC .21 }{|lcn ||[—21—_RES
owWe 20| [|——20 ATOWC
GND 19 g | f—19——GhD
“CLKE 18 |{p[|l——18 .._DEN
moy 17— |igp [|—17——MRDY
“Ne 6 |0 i]l— 18— NG
“INT3 15Dl . 1P_ALE
a6 14 (| oo || 14 TWTZ
aB8 13| oo ||—13——AB7
DB9 2.t 00 ||l—12—DBS8
oBi1 — ti_.i| g [jtt DB10
DB13 .10 {lopgli—10__. DB12
oeis 9 |lopll— 9—....DB14
AB2 8|00 |l— &——_AB1
AB4 7| op H— 7——aB3
ABO B {00 [[— B ..__ABS
AB14 5 || [||—— 55— _AB13
AB1S 4 (0 [|—— 2 AB16
AB17 3 [i[1]|i— 3.—_nB18
a9 2 ___.||lpn i - 2— BRE
NG — e |00 i —— te—me CLK1B**
—_ | '
O
*"Indicates differences with other
products within the Apricot range.
See Tahle below.
Fin ! pcfxi | Portable F1
A1 CKIB | CKI5 | CK15{14MHz)
A1 INT2Z | INT3 | NT2
Al6 EXT2 | NC. | NG
B1|NMI | NMI | NG
B15 | INT3 INTE | INT3
B16 | EXT1 N.C. | N.C.
B18 | CKB | CKB | CKB(4.67MHz}
B22 | DMAT: N.C. | NC.
B23 | omazi nNcC. [wNC

Figure 2. Expansion Slot

Expansion 2.5/5

Pin Definition - Expansion Slot/Connector

Pin Description Input/Output
ABO to AB19 20-bit system address bus QOutput
DBO to DB 15 16-bit system data bus Bi-directional

BHE Bus High Enable Output

ALE Address Latch Enable Output

DEN Data Enable Qutput

DT/R Data Transmit/Receive Output
AMWC Advanced Memory
Write Command Qutput
MWTC Memory Write Command Output
AIOWC Advanced Input/QOutput
Write Command Qutput
IOWC Input/OQutput
Write Command Output
MRDC Memory Read Command Output
IORC Input/Qutput
Read Command Output
MRDY Memory Ready Input
IORDY Input/Qutput Ready Input
RES System Reset Qutput
CLK15 14MHz Clock signal Qutput
CLKB 4.67MHz Clock signal Quiput
INT2 Interrupt Request 2 Input
iNT3 [nterrupt Request 3 fnput
+ 12V System Board supply rail Qutput *
— 12V System Board supply rail Cutput
+ 5V System Board supply rail Output =

* not available on the Expansion Connector

2.5/6 Expansion

Expansion Connector

The external Expansion connector is a 60-way male IDC
connector to which an external Expansion Unit can be
connected. The connector is located on the right hand side
panel of the Systems Unit, and mounted on the

System Board.

The Expansion Unit is responsible for re-powering the
Expansion Bus as necessary, {0 meet the drive capability of
multiple Expansion Slots. Power supplies for the unit are not
available on the connector apart from — 12V,

The connections wired to the Expansion connector are the
same as the connections to the Expansion Slot apart from
the supply lines + 12V and + 5V (see Figure 3).

ARRBROW INDHCATES

PIMN 1

Figure 3. Expansion Connector

— 2 CB1
R 0DB3
__ B 0B85
____ B8 DB7
e W___AB9
__ 12 AB12
__ 1a_... IAADC
16 DT/R
___ 18 IGRE
___ 20 RES

22 . ETOWC
__24_ GND
__ 75 DEN
23 MRDY
30 N.C.
32 ALE
- 36 MTZ
36 AB7

_._38 DB&
4D DR1Q
____42___.. DRz
A4 DB14
45 aBi1
... AR aB3
_50 _ABG
__ B2, AB13
54 AB16
____BB____ AB18
. B8 BHE
__ B0 CLKI5

Expansion

2.5/7

Electrical specification

The following paragraphs detail the standard electrical
specification for an Expansion Slot within the current range
of Apricot microcomputers. The same specification can be
applied to the relevant connections on the F 1 Expansion
Connector.

Current Consumption

Maximum allowed current consumption of a circuit board
fitted into the Expansion slot is:

0.5A from the + BV rail.
50mA from the + 12V and — 12V rails.
Signal OQutputs

All signal outputs (data, address, control and clocks) have
the capability to drive a maximum of 2 LS TTL loads, i.e.

Logic high state voltage (Voh);

2.0 < Voh < 5.2b with maximum high state output source
current of 40 LA,

Logic low state voltage (Vol);
— 0.5 < Vol < 0.8V with maximum low state output sink
current of 0.8maA.

Signal Inputs

All signal and control inputs {apart from the interrupt lines})
require a tri-state driver stage meeting the following
requirements. Logic high state voltage (Voh);

2.4 < Voh < 525V with maximum high state output
source current of 400 LA.

Logic low state voltage (Vol);

— 0.5 < Vol < 0.5V with maximum low output state sink
current of 8BmA.

The interrupt inputs require to be driven by an open collector
driver stage. These lines on the System Board are fitted with
pull-up resistors {3.3k).

2.5/8 Expansion

Pin Detail

A description of each connection to the slot is detailed below.

DBO to DB15 16-bit system data bus. Connected to the pair
of transceivers which form the interface
between the processor and the system data
bus. DBOis the LSB, DB 15 the MSB. In
effect, the bus is divided into two parts
(the low order section DBO to DB7, and the
high order section DB8 to DB 15}, to support
both 8-bit (byte) and 16- bit (word) data
transfers. Byte transfers from/to even
address locations are transferred on the bus
lines DBO to DB7 and byte transfers from/to
odd address locations are transferred on bus
lines DB8 to DB 15. Word transfers from/to
even addresses are transferred on bus lines
DBO to DB 15 in a single operation. Word
transfers from/to odd address locations are
automatically transferred in two consecutive
data byte transfer operations; the first
operation uses bus lines DB8 to DB 15 (odd
address transfer), and the second operation
use bus lines DBO to DB7 (even address
transfer).

ABO to AB19 20-bit system address bus. Connected to the
octal D-type latches which demultiplex the
20 address bits from the processor bus (time
muliiplexed address/data bus for the 16 LSB
and the time multiplexed address/status bus
for the 4MSB). ABOis the LSB, AB19 the
MSRB. ABQ has a special function and is
normally used in conjunction with the
BHE signal to condition circuitry for byte or
word data transfers.

Expansion 2.5/8

Pin Detail continued

BHE

Bus High Enable. Connected to an octal
D-type latch which buffers the BHE signal
from the processor. Normally used in
conjunction with ABO to enable circuitry for
byte or word data transfers on the low or
high order sections of the 16-bit data bus as
follows;

BHE ABO Transfer operation

0 0 Whole Word
O 1 High order byte
1 O Low order byte
1 1 None

ALE

Address Latch Enable. Driven by a pair of
inverters. Negative edge of the active high
pulse provides an indication of when the
address is valid.

DEN

Data Enable. Output supplied by a line driver.
Active high during memory and input/output
data transfers.

DT/R

Data Transmit/Receive. Processor output
driven by an octal D-type latch. Signifies
direction of data flow. Logic high indicates
data transmission from the processing
system; logic low, data reception.

AMWC

Advanced Memory Write Command. Active
low control signal which is set active before
the Memory Write Command to provide
memory-mapped devices an earlier indication
of a write cycle.

MWTC

Memory Write Command. Active low write
command for memory-mapped devices.

AIGWC

Advanced Input/Output Write Command.
Active low control signal which is set active
before the Input/Output Write Command to
provide input/output devices an earlier
indication of a write cycle.

Input/Output Write Command. Active low
write command for input/output devices.

Memory Read Command. Active low read
command for memory-mapped devices.

2.5/10 Expansion

Pin Betail continued

IORC input/Output Read Command. Active low
read command for input/output devices.

MRDY Memory Ready. Input connected to the wait
state generator circuit on the Systems Board
via an LS21 gate. Normally at logic high, but
is set low 1o command the processor to
extend the control transfer commands, by
inserting wait states, until the selected
memory- mapped device is ready for the data
transfer operation. MRDY returning to logic
high indicates that the selected
memory-mapped device is ready for the data
transfer operation (read or write).

IORDY Input/Output Ready. Input connected to the
wait state generator circuit on the Systems
Board via an 1.521 gate. Normally at logic
high, but is set low to command the
processor to extend the control transfer
commands, by inserting wait states, until the
selected input/output device is ready for the
data transfer operation. IORDY returning to
logic high indicates that the selected
input/output device is ready for the data
transfer operation {read or write}.

RES System Reset. Output from the 555 timer
circuit via an inverter. Active low state
generated by the receiving a hardware reset
(power on reset or via pressing the Reset
button on the Keyboard).

CLK15 14 MHz Clock signal. Output from the
14 Mhz oscillator (50% duty cycle).

CLKb 4.67 MHz Clock signal. Qutput from a
divide-by-three circuit supplied by the
14 MHz oscillator. Inverted form of the
processor clock signal. {66% duty cycle).

Expansion Z2.5]77

Pin Detail continued

INT2 Interrupt Request 2. Input line merged with
INT3 into a single interrupt line and wired to
the clock/trigger input of channel O of the
Z80 CTC on the Systems Board. The
interrupt type number supplied to the 8086
processor on acknowledgement of an
interrupt request on either INTZ or INT3 is
60H. (The interrupt type number acts as a
pointer to the interrupt service routine).

INT3 Interrupt Request 3. {(see INT2 above).

Address Allocation

The available address locations in the system memory space
and input/output space allocated to Expansion Boards are
detailed in the following paragraphs. 8-bit devices connected
to the lower half of the data bus must be located on even
address boundaries and 8-bit devices connected to the
upper half, on odd address boundaries.

System memory

The available address locations in the system memory space
is dependent on the mode! within the Apricot F1 range.

40000H to COOOCH - 256 Kbyte F1
80000H to COO00H -512 Kbyte F1 *

* Initially only available in the USA.

1 processor wait state is automaticaily inserted on all
memory read and writes. The processor wait states can be
extended if the MRDY input to the system is utilised.

System input output space

The available I/O address range for the Expansion Boards is
split into a number of categories according to the type of
board. This approach has been adopted in-house within ACT
for its whole range of Expansion products to avoid the
possibility of the Expansion Slots being filled with Expansion
Boards utilising the same |/O addresses.

Any third party vendor who wishes to design Expansion
Cards which are/will be compatible with ACT’s existing and
future products should adhere to the same scheme.

2.5/12 Expansion

The following table details the /O addressses assigned to the
various categories of Expansion Cards. (The values of the
port addresses are in hexadecimal).

Expansion Board 1/0 Port 1/O Port

Category Address Address
Colour/Graphics Boards 80to8F 100to 10F
IEEE 488 Controllers 90t 9F 110to 11F
Local Area Networks ACto AF 120to 12F
Gateways BOtoBF 130to 13F
Miscellaneous Communications COto CF 1401to 14F
ACT Reserved DOtoDF 1B0to 16F
Winchester Boards EQtoEF 1EQto 1FF
Modems FOtoF7 1COto 1DF
Undefined e 160to 17F
Undefined — 180 to 19F
Undefined — 1AO0to 1BF

1 processor wait state is automatically inserted to any /0
read or write by accessing any of these addresses. The
processor wait states can be extended if the IRDY input to
the system is utilised.

Using Interrupts

Two interrupt lines are wired to the F1 Expansion Bus {INT2
and INT3}. This is to maintain compatibility with other
products in the Apricot range of computers, since the
interrupt lines are merged into a single interrupt line on the
System Board. The same interrupt type vector (60H} is
supplied to the 8086 CPU irrespective of whether INT2 or
INT3 generates the interrupt.

The two interrupt lines are connected together {via a pair of
logic gates) to form a single physical interrupt line to the
Z80 CTC on the System Board. The Z80 CTC is one of the
devices capable of generating vectored interrupts within
the F1. It is described in detail in the Timer and Interrupt
Control chapters.

Reference should be made to these chapters if you require
more low-level detail than provided in the paragraphs below.
These describe how to integrate interrupt-driven Expansion
Boards into the current range of Apricot computers.

Expansion 2.5/13

To account for the possibility of more than one board
requiring the use of the same Apricot interrupt line (and as
there is only in effect one interrupt line on the F1 anyway):

1. All boards using either of the interrupt lines must
contain a status register.

2. The interrupt must be driven by an open collector output.

3. The software device driver must operate in the manner
described in the paragraphs below. The use of the
status register will also become apparent.

If space permits on the board, the designer should track the
board to both interrupt lines and fit a link facility to provide
the board with the option of driving either interrupt line.

External Expansion Interrupt Set-up

To aliow the software programer to easily link his device
driver into all machines in the Apricot range of computers
{Portables, F1 and pcs/xis with the generic BIOS), a special
software interrupt is available. The purpose of this is to allow
the programmer to mask out the differences in interrupt
structure between the various machines within the Apricot
product range with regard to interrupt type vectors.

The interrupt routine produced by generating an active
interrupt on INTZ on the Apricot F1 is identified by interrupt
type number 60H. The interrupt routine produced by
generating an active interrupt on the corresponding
interrupt line (INT3) on the Portable is identified by the
interrupt type number 53H.

The Expansion set up interrupt OF4H enables the
programmer to install his vectors in the appropriate locations
by relating them to the interrupt line without regard to the
particular Apricot machine. {This applies to Apricot
Portables, Apricot F 1s and Apricot pcs and xis fitted with
either the ROM BIOS or the RAM BIOS equivalent).

To use this interrupt requires the programmer to load the
8086 registers AL, BX and CX with the data as shown below
and then generate the interrupt. Datais returned in BX and
CX as shown. The purpose of this is explained in the next
few paragraphs.

2.5/714 Fxpansion

OF4H - External Expansion Interrupt Set-up

Input: AL = O - Set External Interrupt 2 (Winchester) =
AL = 1 - Set External Interrupt 3 {general) *
BX = Vector Offset Word

CX = Vector Segment Word

QOutput: BX = Old Vector Offset Word
CX = Old Vector Offset Segment

* See Figure 2 for corresponding Interrupt Lines on the
Apricot Portable and the Apricot pc/xi range of
machines. The interrupt line INT2 on the + 1 corresponds
to INT2 on the Apricot pc/xi range of machines. This
was originally reserved for use solely by the Apricot
Winchester Controller. This is no longer a requirement if
machines are fitted with Revision 9 or later versions of
Winchester Controlier Board.

Installing the device driver at system boot

One of the routines executed during initialisation must be to
install the two vector words associated with the device driver
service routine using the Expansion Set-up interrupt. The old
vector addresses returned must be saved (the reason for
doing this is given below).

Run-time operation

The first task undertaken by the service routine must be to
read the status register to check that the device is the actual
cause of the interrupt. If not, the device driver should
immediately relinguish control {o the service routine
specified by the vectors returned by the Expansion

Set-up Interrupt.

If the interrupt is caused by its own device as indicated by the
status register, the driver naturally performs the appropriate
service routine. At the end of the routine, the device driver
must relinguish control to the routine specified by the
vectors returned by the Expansion Set-up Interrupt.

This effect, where multiple device drivers are installed all
using the same interrupt line, is similar to the technique of
“daisy chaining” interrupt lines and acts as a logical extension
to the MS-DOS 2.0 installable device driver philosophy.

Expansion 2.5/186

Notes

1. At boot-time the BIOS assigns in effect a null device
driver to the available interrupt numbers, which
performs two functions:

a. Supplies the RETurn from Interrupt (RETI) command
sequence to the Z80 Controllers.

b. Returns control back to the program point
of interruption.

The “null device driver” is always the last driver to be
serviced, since it will aiways be the first one installed (i.e. the
end of the “daisy chain”).

2. Since the last loaded driver will always be the first
device serviced following an interrupt (i.e. the
beginning of the “daisy chain”), the order of loading
multiple device drivers automatically assigns an order
of priority. Time critical device drivers therefore, should
always be loaded last.

3. The maximum time allowed for each interrupt service
routine should generally not exceed 10ms.

Expansion Board Layout

The dimensions and layout details for an Expansion Board
are detailed on Figure 4.

The uppermost view illustrates the overall board dimensions
and the location of the connector.

The middie projection provides a different view of the
connector and details the maximum height available for
components mounted on the board.

The lower illustration details all the drilling requirements for
the printed circuit board and the board area available.

This design of Expansion Board is for a standard board
which will fit into the Expansion Slots on the dual expansion
slot version of the Apricot pc/xi range of micros. These are
currently the machines which are most restricted in terms of
space available for Expansion components.

2.5/16 Expansion

In order to design boards which encompass the full range of
Apricot products, all boards should be designed to these
tighter tolerances. (In general, all Expansion Boards should
be designed to the tighter tolerances specified for the slot
Expansion 1 on the Apricot pc/xi range to allow other
boards which may require the extra depth of Expansion 2
slot to fit into the pc/xi machines).

Note:

1. The 3.85 mm diameter holes located in three corners of
the board are only required on expansion cards made
up of two boards, in the form of a “sandwich “(i.e. a
main board fitted with the expansion connector, and a
piggyback board separated from the main board by
spacers). In this situation, the three holes can be used
as general purpose tooling holes and also as screw
holes for the spacer fixings.

2. On single board expansion cards, the 3.85 mm
diameter located in the upper right-hand corner is not
required, thus providing a small extra area of board
space. The two 3.85 mm holes on the left-hand side of
the board together with the connector fixing hole in the
lower right-hand corner can then be used as tooling
holes, if required.

Expansion 2.5/77

COMMELTOR FASTENED
TOPCE
PRIOR TO SOLDERING

|q 147.0 .
41 0 O
S MAIN PCB
R COMPONENT SIDE

bIM 41612 TYPE B B4 PIN

X 20 wmenior EXP SLOT 2
X THmmFOREXPSLOT 1

—— MAX,. COMPONENT HEIGHT — —4 — — ——

B0 HE0 00 0SDA00008ESE0S0000 008D
O 0B C0 000048000300 6E0GE600a0a04004

DIMENSIONS: ALL SIZES ARE IN MILLIMETRES UNLESS

ODTHERWISE SPECIFIED
TOLERANCES: BOARD S12E +/— 0.2
OTHERS, +/.- 01

HOLE NOT REQUIRED
OW SINGLE BOARD
_H |10 FXPANSION CARDS

|d—1o.6

BOARD AREA
MNOT AVAILABLE

TRACK/COMPONENT
CLEARANCE 6.8mm DIA.

3 HOLES 3.85mm DlA.
MNOT THROQUGH HOLE PLATED

g.5men OlA.

MAIN PCB
COMPONENT SIDE

84 HOLES ON 0. 1% PITCH
t.imm CHA. AFTER
THROUGH HOLE F'LAT!NG7

32

P DO DEACODJ0000C00ER0ACADDIE000

a
P EO0OQ 8400000003080 E00d0S00 000000

TRACK/COMPONENT CLEARANCE

Y

6§3.50

276

]
& e
T &

2.5/

Q

&

—p| 254
|¢-5.08
<

Figure 4. Expansion board detail for pe/xi range

ig

EXpansion

- i
\ 2 HOLES 2.8mm DIA. /_,,-"/2‘50_’ k{
NOT THROUGH HOLE PLATED
so8- 9| @4— ™ Rererence

HOLE NOT REQUIRED ON SINGLE 762l
BOARD EXPANSION CARDS leg 83.82 : >
!4 88.90 >
4 138.0 , 4

Contents

Introduction

Details
General
Disk Write
Disk Read
Disk formatting
Read/write head positioning

FDC detail
General
Processor Interface
Data Requests
Interrupt Requests
Disk Drive Control
Command Register
Status Register
Track Register
Data Register

Programming Considerations
General
Disk Drive Selection
Motor Control
Head Loading
Head Positioning
Data Transfers
Formatting Commands
Force Interrupt Command

Interface Connection Detail
System Connections
Disk Drive Connections

Track Format

lllustrations

1. Floppy Disk Interface
2. Track format

D]

Floppy Disk interface 2.6/7

'

g%

5
%

The Fioppy Disk Interface is located on the System Board
and consists of the elements of circuitry as illustrated on the
biock diagram, Figure 1. The interface provides all the
control functions necessary for formatting and transferring
data to and from MicroFloppy Disks in the Disk Drive.

The configuration can operate with either single-sided or
double-sided disks.

The disks are soft-sectored and encoded with the same disk
format as the disks used on the Apricot pc/xi range of
products. This format is logically developed from the iBM
system 34 format (a standard format for 8 inch disks), and is
specifically designed to abtain the optimum number of data
bytes on a 3.5 inch MicroFloppy disk.

The format employs double density MFM coding with 512
bytes per sector and 9 sectors per track. The number of
tracks per side for a doubie-sided disk is 80. (The
single-sided disks are 70 track).

A brief description of the disk format is included at the end of
this chapter (under the heading Track Format}. This should
be read now, if the reader is unfamiliar with the method of
recording data on disks.

Control connections between the interface and the drive is
made internally within the Systems Unit. The Floppy disk
drive connector is a 26-way male |IDC terminal mounted on
the component side of the Systems Board. An associated
ribbon cable assembly links the interface to the drive.

Regulated power supply voltages for the disk drive are
supplied directly from the Systems Board via a Molex
connector and a 4-wire cable assembly.

2.6/2 Floppy Disk Inierface

General

The Floppy Disk Interface consists of a Western Digital
WD2797-02 Floppy Disk Controller (FDC), a series of
buffers, a decoding circuit for selecting and engaging the
disk drive heads, and the interface connector to the disk
drive.

DISK SELECT —p] bso
pa ——— DN ————® pecooen
BT wororon P psi
Az —pdc wine
CONTROL
A2 —PIB “ponrs
Al PA —— | MOTOR CN
CSA J‘ HLD —
! - HEAD LOAD
wol——p ——P| WRIE DATA
2MHz —b R,
NV WRITE CATE
— o WRITE GATE
Wi BUFFERS
A Yoo STEPL—» Ml STEF
DATA BUS) TO —
07 DIRC——»] P DIRECTION
p————— 550 |-—ipir] | SIDESELECT
CONTROL BUS (AIUWC, |0Hc;> WE, LE
FLOPPY
FOC DISK
WD 2797B02 CONNEGTOR
AAW RD {—— —-——1 READ DATA
FOG SELECT (56— G5 TROC pg-——]] TRACK 00
AZ P A Flg—] &urFers |- INDEX
At ——J] a0 READY | —— ——] READY
WPET|——— . §— WRIE PROTECT
DRQ INT
DATA AEQUEST INTERRUPT
£086 TEST REQUEST
BOSE NMI

Figure 1. Floppy disk interface

Floppy Disk interface 2.6]3

FDC Pin Definition

WD Write Data DRQ DataRequest
WG Write Gate INTRQ Interrupt Request
STEP Step pulse output CLK Clockinput

DIRC Directioncontrol DO to D7 Data bus

SSO Side Select Output WE Write Enable

RAW RD Read Data RE Read Enable
TROO Track QO CS Chip Select
[P Index Pulse AQ, A1 Register selects
READY Ready input MR Master Reset

WPRT Write Protect

Four of the control lines to the Disk Drive are wired to a latch
and are under direct control of the system software.

Two of these control lines (DSO, DS 1) are routed via a simple
decoding circuit to select the required disk drive in a dual
disk system. The third control line is the Head Load signal
(HLD) for engaging the read/write head of the selected disk
drive, The fourth is the motor control line {Motor On).

A full description of their use is provided in the section
Programming Considerations, later in this chapter.

The remaining control and data transfer functions are
implemented by the FDC. It controls the movement of the
read/write head, transfers data to and from the disks, and
monitors status signals from the drive.

These functions are described in the section FDC Detail, and
the associated interface connections are tabulated in the
section Interface Connections.

All disk transfer operations performed by the FDC
{formatting, reading disk data, writing data onto disks} are
initiated by the 8086 CPU. The FDC then assumes control of
the data transfer.

To illustrate some of the basic principles involved, the
following paragraphs present a simplified description of disk
write, disk read, disk formatting, and read/write head
positioning.

2.6/4 Floppy Disk Interface

Disk Write

Disk write operations are initiated by the CPU issuing a write
command byte over the data bus to the FDC's Command
Register. The FDC then searches the disk for the location of
the data (correct side, track and sector, and with the correct
CRC byte values in the ID field).

When it finds the required location, the FDC asserts DRQ
(Data Request) to signify to the CPU that datd is required.
The CPU polls this signal by monitoring its TEST input. When
it detects an active DRQ signal, the CPU writes the first data
byte into the FDC’s Data Register and then restarts the
polling of it's TEST input.

The disk write cycle then repeats for each of the bytes in the
data transfer, as follows:

1. The FDC transfers the contents of its Data Register to
an encoding circuit and re-asserts DRQ (Data Request).

2. The encoding circuit converts the data byte into MFM
encoded data, and writes this data to disk.

3. The CPU detects the active DRQ signal and writes the
next byte to the FDC Data Register.

After the last data byte in the sector is written onto the disk,
a two-byte CRC is computed internally within the FDC,
which is then also written onto the disk.

On completing a write cycle (completed write operation to a
single sector - 512 byte transfer), the FDC asserts INTRQ
(Interrupt Request). This is wired to the NMI {Non-Maskable
Interrupt) input line on the CPU and informs it that the
transfer cycle has finished.

The CPU can then check the FDC Status Register to see
whether any errors occurred during the write operation.
Reading the Status Register {(or writing to the Command
Register) automatically resets INTRQ, ready for the next
command cycle.

Floppy Disk Interface 2.6/5

Disk Read

Disk Read operations are initiated by the CPU issuing a read
command byte over the data bus to the FDC Command
Register. The FDC then searches the disk for the location of
the data {with correct side, track and sector, and with the
correct CRC byte values in the ID field).

When it finds the required location, the following repetitive
disk read cycle is carried out:

1. MFM encoded disk data is read in, decoded and then
assembied into a parallel byte, before being transferred
to the FDC Data Register.

2. The FDC then asserts DRQ active.

3. The CPU polis for the DRQ signal on its TEST input line.
When it detects an active DRQ, it reads the assembled
byte from the FDC Data Register.

On completing the read cycle (completed read operation of a
single sector - 512 byte transfer}, the FDC asserts INTRQ
(Interrupt Request). This is wired to the NM! (Non-Maskahle
Interrupt} input line on the CPU and informs it that the
transfer cycle has finished.

The CPU can then check the FDC Status Register to see
whether any errors occurred during the read operation.

Reading the Status Register (or writing to the Command
Register) automatically resets INTRQ ready for the next
command cycle.

2.6/6 Floppy Disk Interface

Disk Formatting

Disk formatting is a similar process to disk write operations
but involves transferring both data and gap information
(unintelligent information used to separate areas of data on
the disk, see Figure 2) onto the disk, and is executed on a
track-by-track basis.

The process is initiated by the CPU issuing a Write Track
command to the FDC. The FDC responds by signifying to the
CPU that a byte is required by asserting DRQ. The CPU again
polls for the DRQ signal on its TEST input line.

When the CPU detects an active DRQ, it writes the first gap
byte into the holding register {Data Register) within the FDC.
The FDC resets the DRQ output and then waits for the Index
Pulse {the marker for the starf of a track) to be detected.

On detecting the index Pulse, the FDC transfers the byte
within the Data Register to an encoding circuit and re-asserts
DRQ. The CPU responds by writing the next byte to the Data
Register and the process is repeated. The encoding circuit
converts the byte into MFM data and writes the data onto
the disk.

This process continues until the FDC detects the next Index
Pulse, which causes the FDC to generate an interrupt
request on the INTRQ output.

The interrupt request again has the same functions as
described before; i.e. it indicates to the CPU the end of the
command cycle. Any errors produced during the transfer
can then be checked by the CPU analysing the FDC status
register.

Resetting the INTRQ output is achieved by reading the
Status Register or issuing a command to the FDC.

Floppy Disk Interface 2.6/7

€

o

Redderite Head Positioning

Prior to performing any of the disk transfer routines
described above, the read/write head has to be positioned
over the required track on the selected disk and the head
load control signal issued to engage the read/write head.
The head positioning operation is achieved under software
controi by issuing a command byte to the FDC.

The FDC responds to five different head positioning
command bytes; each moves the head to a position specified
by the command. The five commands are Restore, Seek,
Step, Step-in and Step-out. The function of each command is
detailed in the table below.

Head Pbsiﬁoning Commands

Command Function

Restore Positions the head over Track O on the Disk.

Seek Positions the head to the track number
specified in the Data Register.
Step Moves the head to an adjacent track in the

same direction as the previous head
positioning command.

Step-in Moves the head to the adjacent track in the
direction away from Track O.

Step-out Moves the head to the adjacent track in the
direction towards Track O.

On completion of a head positioning command, the FDC
generates an interrupt request on the INTRQ output to
indicate to the CPU the end of the command cycle. Reading
the Status Register or writing a new command to the FDC
resets the INTRQ output.

An optional feature of each of the five commands is to
automatically verify the track position of the head, by
comparing the track number stored within an internal
register {Track Register) with the track number contained in
the 1D fields on the disk.

ey

FHoppy Disk Interiace

The verification operation also checks the |ID field for errors
utilising the ID field CRC bytes. Failure to detect the same
track number or incorrect CRC detection, sets error status
bits within the Status Register. Since this feature involves
reading the disk |D field, the head has to be loaded prior to
the command.

The signals supplied by the FDC to the disk drive, to position
the read/write head are the STEP and DIRC {direction}
outputs. A step pulse with a duration of 2 us is issued to the
drive every time the FDC wants to move the head by one
track location.

The FDC determines the direction of movement implied by
the command and sets the state of the direction cutput
accordingly. (Logic high to move the head away from
Track O, logic low to move the head towards Track O}.

Floppy Disk interface 2.6/

5

General

The FDC can be divided from a descriptive point of view into
three areas of circuitry, a processor interface, a disk drive
controller, and a series of registers.

The processor interface handles the transfer of data,
commands and status, between the internal registers and
the CPU, and also generates the interrupt and DRQ signals.

The disk drive controller responds to commands from the
CPU, providing the neccessary circuitry, and input and
cutput lines for:

. Controlling the positioning of the drive read/write head.
2. Transferring data to and from the disks.
3. Monitoring the disk drive status.

The internal registers provide the means of exchanging
infermation (commands, status, positional data) between the
disk drive controller and the processor interface.

2670 Floppy Disk Interface

Processor Interface

The connections to the processor interface are detailed in
the table “System Connections” at the end of the chapter.
The majority of the circuitry is a straightforward interface
between the 8-bit bi-directional data bus and the series of
addressable registers located within the FDC.

The system software views the registers as a series of
peripheral ports located in the system input/output space.
The port address locations as defined by the FDC select and
the system address bus connections, are detailed below. The
Data, Sector and Track Registers can be written to and read
from. The Command Register can only be written to, and the
Status Register can only be read from.

Address Register Transfer
40H Command Write only
40H Status Read only
42H Track Read/Write
A4H Sector Read/Write
46H Data Read/Write

The remaining circuiiry of the processor interface consists
of the control section, which produces the INTRQ and
DRAQ outputs.

Data Requests

The DRQ output is activated {set to logic high), during data
transfer operations to and from the disk, and follows the
state of an associated control bit within the Status Register.
During disk read operations, the DRQ output is set active
when the FDC has data available from the disk within the
Data Register. The output is reset to the inactive state when
the byte is read by the CPU.

During data write and formatting operations, the DRQ
output is set active when the FDC Data Register is empty,
and the FDC requires another byte from the CPU. The output
is reset when the Data Register is loaded with a new byte.

Floppy Disk Interface 2.6/717

Interrupt Requests

The INTRQ output is activated (set to logic high) on the
successful completion of disk read, write, or formatting
operations. It is automatically reset following these
operations, on reading the Status Register or issuing a new
command to the Command Register.

The INTRQ output is also set to logic high, for a variety of
other conditions {premature termination of a disk transfer
command sequence due to an error condition, completion of
a read/write head position command, etc.).

In all cases, INTRQ can be reset by either reading the Status
Register or issuing a command to the Command Register.
These other conditions are detailed in the following
paragraphs.

The first operation performed by the FDC on receiving a disk
read or disk write command is to check whether the disk is
ready for a transfer operation by analysing the READY input
from the disk drive. If the input is set to logic high, the
command sequence is initiated. If the input is set to logic low,
the command sequence is immediately aborted, the Not
Ready bit set within the Status Register, and the INTRQ
output activated. The FDC also analyses the Write Protect
input {(WPRT) from the disk drive on receiving a disk write or
formatting command. If the WPRT input is activated {logic
low, indicating that the disk is write protected), the write
operation is terminated, INTRQ is activated and the Write
Protect bit set within the Status Register.

Prior to writing data to or reading data from the disk, the
FDC locates the correct sector for the transfer operation, by
analysing the ID fields on the disk. Failure to detect an |D
field with the correct track number, correct side number,
correct sector number and correct CRC within five
revolutions of the Disk, sets the Record Not Found (RNF) bit
in the Status Register, activates the INTRQ output and
terminates the transfer operation.

At the start of disk write and formatting operations, the FDC
siginifies to the CPU that the first byte is required, via the
DRQ output. If during formatting, the CPU fails to supply the
first byte before the FDC detects the Index Pulse, the Lost
Data {I.D} bit is set within the Sfatus Register, INTRQ is
activated and the formatting operation is terminated.

2.6/12 Floppy Disk inierface

if during disk writes, the CPU fails to supply the first byte
before the start of the data field, the same process occurs;
the Lost Data bit is set, INTRQ is activated and the operation
is terminated.

During disk read operations, the FDC checks the two-byte
CRC code at the end of the sector data field to ensure the
validity of the data. If a CRC error is present, the CRC error
hit in the Status Register is set, INTRQ is activated and the
read operation is terminated.

in addition to the transfer commands, the INTRQ output is
also activated at the end of the command sequence for
positioning the read/write head of the drives. The success of
the operation is again signified by the status bits within the
Status Register.

The first operation performed by the FDC on receiving the
Restore command is a check of the Track O input (TROO). If
the TROO input is set low (indicating that the head is already
positioned over the first track), and the verification option is
not selected, the FDC clears the Track Register to zero and
activates the INTRQ output.

lf the TROO input is high, the FDC issues step pulses until the
TROO input is set low, which then produces the same effect
as described above, providing the verification option is not
selected {i.e. INTRQ activated, Track Register cleared}. If the
TROO input is not set low within 255 step pulses, the
operation is aborted, INTRQ is activated, and the Seek Error
bit with the Status Register is set.

If the verification option is selected with any of the head
positioning commands, the FDC moves the head to the
specified position and then reads the first encountered

ID field on the disk. The track number from the ID field is
compared with the track number stored in the Track
Register. Providing the two numbers are identical and the
ID field CRC bytes are correct, the track position is deemed
true, and the INTRQ output is activated.

If the track numbers match, but the CRC is incorrect, the
CRC error bit within the Status Register is set and the next
encountered ID field is analysed. f the FDC fails to detect an
ID field with a matching track number and correct CRC
within b revolutions of the disk, the operation is aborted,
INTRQ is activated, and the Seek Error bit within the Status
Register is set.

Floppy Disk Interface 2.6/13

The FDC can be also issued with a command {Force
Interrupt), which sets the Status Register to monitor the
state of the input status lines from the drive, and causes the
INTRQ output to be activated for any of the conditions
detailed below:

1. Immediately the command is received.
2. Every time an Index Pulse is detected.
3. On detecting a transition on the Ready input.

Disk Drive Control

The disk drive controller circuitry acts as the interface
between the disk drives and the other areas of circuitry
within the FDC and consists of the disk data encoding and
decoding sections, the head positioning control section and
a status monitoring section.

Connections to and from the FDC disk controller circuitry
are detailed in the table “Disk Drive Connections” at the end
of the chapter.

At the start of a data transfer operation to the disk (write
operation)}, the Write Gate output is activated and the CPU
begins the process of transferring data bytes to the Data
Register in parallel format.

The FDC transfers each byte from the Data Register to the
encoding circuit. The encoding circuit converts the bytes
into MFM double density encoded data, which is then
supplied to the disk via the Write Data output.

When writing to tracks with a track number greater than 43,
the encoding circuit provides automatic write
precompensation. The precompensation value is set by a
potentiometer (VR 1), located on the Systems Board.

The decoding section of the disk controller circuitry decodes
the MFM encoded data from the Raw Read input, during
transfer operations from the disk. The decoderis a
phase-locked loop data separator circuit based around an
internal voltage controlled oscillator (VCO) and phase
detector.

The centre frequency of the VCO is set by a variable
capacitor (VC 1), located on the Systems Board. A second
variable control VR2 sets the read window pulse width.

The head positioning control section responds to the head
positioning commands supplied to the Command Register
and controls the STEP and Direction (DIRC) outputs.

2.6/14 Floppy Disk Interface

The rate at which the 2 us step pulses are issued to the drive,
to move the head from track-to-track is specified by the
command. Issuing a step pulse to the drive to move the head
towards Track Q, automatically decrements the Track
Register. Issuing a step pulse to the drive to move the head
away from Track O, automatically increments the Track
Register.

The status monitoring section monitors the logic state on the
four inputs from the disk drive, READY, TROO Index Pulse
{IP) and Write Protect (WPRT). All the four inputs can be
monitored by issuing any of the head positioning commands
or the Force Interrupt command, and then examining the
contents of the Status Register.

The effect of the status inputs on the operation of the FDC is
dependent on the command issued to the Command
Register and the logic state of the input line.

Command Register

The 8-bit Command Register holds the command supplied
from the CPU which determines the type of operation
carried out by the FDC, and is located at address location
40H in the |/O space. The register can only be written to
with one of eleven predefined command words. A command
currently in progress is indicated by an associated control bit
within the Status Register.

The eleven commands can be divided into four different
categories as detailed below. A detailed description of each
command is provided in the Programming Considerations
section.

Type 1. Read/write head positioning commands:
Restore, Seek, Step, Step-in, Step-out.

Type 2. Data transfer commands: Read Sector,
Write Sector.

Type 3. Format code transfer commands:
Read Address, Read Track, Write Track.

Type 4. Interrupt command: Force Interrupt.

Floppy Disk interface 2.6/15

Status Register

The 8-bit Status Register holds status information, which is
dependent on the command operation performed by the
FDC. The register is located at address 40H in the system
I/Q space, and can only be read from. Some of the bits
within the register signify the state of the control inputs from
the disk drive, whilst others indicate the status of the
command operation.

Track Register

The 8-bit Track Register indicates the track number of the
position of the drive read/write head and is located at
address location 42H in the system I/0O space. The register
can be written to and read from. The FDC updates the track
register during head positioning command operations, every
time the drive head is moved to an adjacent track.

Sector Register

The 8-bit Sector Register is used to store a sector number,
which indicates to the FDC the desired location on the disk
for a transfer operation. The register is located at address
location 44H in the system input/output space and can be
written to and read from.

Data Register

The 8-bit Data Register is the holding register during transfer
operations to and from the disk, and is located at address
location 46H in the system |/O space. The register performs
a different funciion during the Seek Command, when the
register is programmed with the desired track location.

General

The system software controls the Floppy Disk Interface
directly, by addressing control ports in the System
Input/Output Space located within the FDC and a
bit-addressable latch.

The FDC also communicates with the system software via
two output lines to the CPU:

DRQ Data Request indicates that the FDC is waiting for
a byte transfer to or from its Data Register.

INTRQ Interrupt Request indicates one of the following:

1. Command terminated successfully.
2. Command terminated unsuccessfully.
3. Force Interrupt command executed.

The disk control functions performed directly by writing to
the latch are listed below.

1. Disk Drive Selection.
2. Disk Drive Motor Control.
3. Head Loading.

The functions performed using FDC commands are listed
below:

1. Head positioning.
2. Data transfers,

3. Disk formatting.

4, Status Monitoring.

These operations are described in the rest of this section,
including a description of how the FDC Status Register is
affected by each command.

Floppy Disk Interface 26177

Disk Drive Selection

Selecting the integral disk drive for operation is achieved by
writing data to a bit wide port mapped into the system 1/0
space at address location O1TH. The port is connected to the
LSB data line of the high order section of the data bus (D8).
Setting the port output to logic high, selects the integral disk
drive for operation {(i.e. writing a value of FFH to | /O

address O 1H).

The Sony MicroFloppy Disk drive is selected by setting the
logic states on the two drive select outputs (DSO and DS 1),
to match a switch setting located on the drive.

Writing FFH to |/O address O 1H matches the select state of
the drive when it is configured as Drive 2. This is the normal
configuration switch setting of the integral disk drive. (the

drive can be designated as Drive 1, 2, 3 or 4 according o™

the position of the switch - in theory allowing four drives to
be integrated into a single system).

Writing OOH to [/0 address 0 1H deselects drive 2 and
matches the select state of a drive configured as Drive 3.
This extra select state is provided to cater for any future
upgrade of the F 1 into a dual disk system.

The two drive select output lines (DSO and DS 1) form a
two-bit code which can be encoded into one of two different
values only since DSO is always the inverse of DS 1. Writing
FFH to 0 1H sets DSO to logic low and DS 1 to logic high.
Writing OOH to O 1H produces the inverse condition on DSO
and DS1.

Motor Control

A motor control signal {(Motor On) is provided to allow the
disk drive motor to be switched on and off. Controlling the
motor is achieved by writing data to a bit wide port mapped
into the system |/O space at address location O5H, The port
is connected to the LSB data line of the high order section of
the data bus (D8). Setting the port output to logic high,
switches the disk drive motor on (i.e. writing a value of FFH
to 1/0 address O5H).

The double-sided Sony disk drives take approximately 1.6
seconds for the drive to reach its correct rotational speed,
following switch on. Setting the port output to logic low,
switches the motor off {i.e. writing a value of OOH to 1/0O
address ObH).

2.6/18 Floppy Disk Interface

Head Loading

Loading the read/write head of the selected disk drive is
achieved by writing data to another bit wide port. Thisis
mapped at O3H in the system |/O space and is also
connected to the LSB data line of the high order section of
the data bus (D8). Setting the port output to logic high
engages the read/write heads (i.e. writing FFH to 1/ O
address O3H).

The time taken for the Sony double-sided disk drive to
engage the read/write head, after the head load signal is set
active is the order of 60 ms. A 60 ms delay should therefore
be implemented after issuing the head load signal before
performing disk data transfer operations.

The port output also controls the DISC LED indicator located
on the front panel. Everytime the read/write heads are
loaded, the indicator is switched on. Unloading the heads
{writing OOH to 1/0O address O3H) switches the indicator off.

Head Positioning

Positioning the read/write head of the selected disk drive is
achieved by issuing one of the five Type 1 commands to the
Command Register of the FDC. Termination of a command
(successful or otherwise) is signified by an interrupt request
to the CPU. The format of each of the head positioning
commands is detailed below.

Type 1 Commands

D7 DO Command
0 0 0 O 1 V r1 rO Restore
O G 0 1 1 V. r1 rQ Seek
O O 1 T 1 V. r1 rO Step
0 1 0 T 1 V. rt rO Step-in
G 1 1 T 1 V. r1t 0 Step-out

T = Track Update Flag

V = Verify Flag

r1.r0 = Stepping motor rate

Floppy Disk Interface 2.6/18

Each of the commands contain a Verify Flag bit and stepping
motor rate bits. The stepping rate bits have to be set
according to the track-to-track access time of the disk drive.
The combination of bits allow four different stepping motor
rates to be selected as detailed below. The track-to-track
access time of the Sony double-sided disk drive is 12 ms.

r1 r0O Rate

0 0 3ms
0 1 6 ms
1 0 10ms
1 1 1bms

The Verify Flag bit determines whether the FDC verifies the
track position after positioning the head, by reading the
sector ID fields on the disk. Verification is performed, when
the Verify Flag bit is set to logic high, and requires the head
to be loaded prior to the command.

The verification operation checks the track number in the
sector ID field with the number contained in the Track
Register, and also checks the ID field CRC character.

Failure to match the track number or failure to find a
matching track with a valid CRC, within five revolutions of
the disk, causes the Seek Error bit to be set in the Status
Register. If the verification operation detects a CRC error
within any of the |D fields checked, the CRC error hit is set
within the Status Register.

The Step commands contain a Track Update Flag, which
determines whether the Track Register is updated every time
the head moves to an adjacent track. The Track Register is
updated if the Track Update Flag is set to logic high.

Restore Command

The Restore command is used to position the head over
Track O of the disk. The FDC will issue up to 255 step pulses
at the rate specified by the stepping rate bits, in an attempt
to locate the first track on the disk.

Failure to locate Track O (by monitoring the state of the TROO
input) within 255 step pulses, causes the command to
terminate, and the Seek Error bit to be set within the Status
Register. If the Verify Flag bit is set, verification of the track
position is carried out as detailed above.

2.6/20 Floppy Disk interface

Seek Command

Prior to issuing the Seek command, the Data Register has to
be loaded with the desired track number and the Track
Register is presumed to contain the current position of the
head. On receiving the command, the FDC sets the DIRC
output to move the head in the direction of the desired track.

Step pulses are then issued at the rate specified by the
stepping rate bits, and the Track Register updated on each
pulse, until the number in the Track Register coincides with
the number in the Data Register. if the Verify Flag is set,
verification of the track position is carried out.

Step Command

Issuing a Step command moves the head one track location
in the direction specified by the previous command. If the
Track Update Flag is set, the Track Register is updated
following the issue of the Step pulse.

If the Verify Flag is set, verification of the track position is
carried out, after a delay determined by the stepping rate
bits (i.e. A delay of 12 ms for the Sony double-sided drive).

Step-in Command

Issuing the Step-in command moves the head one track
location away from Track Q. [f the Track Update Flag is set,
the Track Register is incremented following the issue of the
Step pulse.

If the Verify Flag is set, verification of the track position is
carried out, after a delay determined by the stepping
rate bits.

Step-out Command

Issuing the Step-out command moves the head one track
location towards Track Q. If the Track Update Flag is set, the
Track Register is decremented following the issue of the Step
pulse. The Verify Flag functions in the same manner as
described above for the Step and Step-in commands.

Floppy Disk Interface 2.6/21

Status Register

The format of the Status Register following a head
positioning command is as detailed below. On issuing a
command to the Command Register, the FDC resets the
Status Register to monitor certain status conditions implied
by the new command. Due to internal timing delays, the
Status Register does not contain valid status information,
until 14 us after the new command is issued.

S7|S6| 1S4 SO| Status Register

538281
E L Busy
Index
Track O
CRC Error

Seek Error
L Protected
Not Ready

Busy A logic high on Busy indicates that the
command is in progress; logic low indicates
that the command sequence is complete.

Index Inverted copy of the Index Pulse input from
the disk drive. Logic low when the pulse
occurs.

Track 0 inverted copy of the TROO input from the
drive. Logic high indicates that the head is
positioned over Track O.

CRC Error Logic high indicates a CRC error was
detected within a sector 1D field during
verification of the track.

Seek Error Logic high indicates a matching track number
was not located within a sector |D field
during the verification operation. The bit is
also set high if the FDC fails to detect a logic
low on the TROO input following a
Restore command.

Protected Inverted copy of the WPRT input from the
drive. Logic high indicates that the selected
disk drive contains a write protected disk.

Not Ready Inverted copy of the READY input from the
drive. Logic high indicates that the drive is
not ready for a data transfer operation.

2.6/22 Floppy Disk Interface

" Data Transfers

Transfer of data to and from the disk is controlied by the two
Type 2 commands, Write Sector and Read Sector. Prior to
issuing the command to the Command Register, the Sector
Register must be loaded with the desired sector number, to
determine the source/destination of the data.

Termination of the command (successful or otherwise) is
signified by an interrupt request to the CPU (NMI). Both
command operations are prematurely terminated, if the disk
drive is not ready for the transfer operation, as indicated by
the READY input.

The format of the data transfer commands is detailed below.

Type 2 Commands
D7 DO Command
1 0 0 1 1 U 0 Read Sector

=)
33

1 1 U 0 Write Sector

Multiple Record Flag
Update SSO

Both commands contain a Multiple Record Flag bit and an
Update SSO bit. The Update SSO bit is used to select the
disk side for the data transfer operations and affects the
logic state of the Side Select Qutput {(SSO), supplied to the
disk drive. When U is set to logic low, the $SS0 is updated to
logic low (side O). When U is set to logic high, SSQO is
updated to logic high (side 1).

The Multiple Record Flag bit selects whether data transfers
are from/to a single sector or multiple sectors within a track.
Single sector transfers are initiated when the m Flag is set to
logic low, muitiple sector transfers when the m Flag is set to
logic high.

=
1

Floppy Disk Interface 2.6/23

2.8/24

Write Sector

On receipt of the Write Sector command, the FDC begins
the process of searching the sector |D fields of the track for
the desired destination for the data.

When an 1D field is found with the correct track number {as
specified by the Track Register), the correct side number (as
specified by the U bit in the command), the correct sector
number {as specified by the Sector Register), and correct
CRC character; the FDC generates an active state on DRQ,
which informs the CPU to write the first data byte into the
Data Register.

If an ID field is not found containing the correct information
within five revolutions of the disk, the command is aborted
and the Record Not Found bit in the Status Register set.

If any of the ID fields encountered, contain an incorrect CRC
character, this is also recorded in the Status Register.

On receipt of the first data byte, the FDC activates the Write
Gate output and on detecting the start of the data field,
writes the data byte to the disk. The process then continues
with the FDC asserting DRQ every time a new byte of data is
required.

After the b 12th data byte is written to the disk, a two-byte
CRC character is automatically generated and written onto
the disk. If the data written to the sector only fills a part of
the data field, the remaining area should be programmed
with a series of zeroes, to complete the whole data field.

ff a single sector write operation was specified by the Write
Sector command, the Write Gate output is then deactivated
and the command operation terminated.

if the Write Sector command specified a multiple sector
transfer, the Sector Register is incremented and the process
repeated, starting from the verification operation on the next
1D field.

The multiple sector transfer operation continues until
terminated either by issuing a Force Interrupt command, or
after the sector number is incremented to a value exceeding
the number of sectors on the track. In the latter case, the
FDC automatically terminates the command after five
revolutions of the disk, since the verification of the |1D field
will not be able to locate a matching sector number.

Floppy Disk intarface

Due to the unpredictability of the FDC terminating the
transfer in a “clean” manner, the usage of multiple sector
transfer operations as dictated by the FDC are of limited
value. For this reason and the fact that the majority of
applications only generally request single sector transfers,
the BIOS only supports single sector operations.

Fast “multiple” single sector transfers are supported by using
a sector interleave factor of 2. (interleaving is the term given
to altering the physical order of sectars within a track to
improve the access time when transferring more than one
sector).

Failure of the CPU to write the first data byte to the Data
Register before the arrival of the sector data field causes the
FDC to, set the Lost Data bit in the Status Register, activate
the INTRQ output, and abort the command.

Failure of the CPU to supply a data byte fo the Data Register
on receiving a DRQ request after the first byte {i.e. within
11.5 us), causes the FDC to write a byte of zeroes onto the
disk and also set the Lost Data bit, but does not terminate
the command sequence.

Read Sector

On receipt of the Read Sector command, the FDC begins the
process of searching the sector D fields of the track for the
desired source of data.

When an ID field is found with the correct track number {as
specified by the Track Register), the correct side number {as
specified by the U bit in the command}, the correct sector
number {as specified by the Sector Register), and the correct
CRC character; the FDC reads the data bytes from the
following data field, and informs the CPU, via the DRQ
output, every time a data byte is stored in the Data Register.

If an [D field is not found containing the correct information
within five revolutions of the disk, the command is aborted
and the Record Not Found bit in the Status Register set.

If any of the ID fields encountered, contain an incorrect CRC
character, this is also recorded in the Status Register.

Failure of the CPU to read the contents of the Data Register
before it is overwritten with the next byte of data from the
disk, causes the FDC to set the Lost Data bit in the

Status Register.

Floppy Disk Interface 2.6/25

If a single sector read operation was specified by the Read
Sector command, the sequence terminates with the FDC
testing the CRC character at the end of the data field. If the
CRC character is incorrect, the CRC Error bit is set within
the Status Register.

if the Read sector command specified a multiple sector
transfer, the Sector Register is incremented and the process
repeated for the next sector, providing the CRC character
tested at the end of the previous data field was true. if the
CRC character was incorrect, the multiple sector routine is
prematurely aborted.

If no CRC Errors are detected, the multiple sector operation
continues until terminated either by issuing a Force Interrupt
command, or after the sector number is incremented to a
value exceeding the number of sectors on the track. In the
latter case, the FDC automatically terminates the command
after five revolutions of the disk, since the verification of the
ID field will not be able to locate a matching sector number.

The BIOS does not support multiple sector transfers (see
Write Sector section above).

Status Register

The format of the Status Register following a data transfer
command is as detailed below. On issuing a command to the
Command Register, the FDC resets the Status Register to
monitor certain status conditions implied by the new
command. Due to internal timing delays, the Status Register
does not contain valid status information, until 14 us after
the new command is issued.

S7186|Shb|S4

So| Status Register

S3|152151
| Busy
DRQ
Lost Data
CRC Error

RNF
... LogicO

Protected
Not Ready

2.6/28 Floppy Disk Interface

Busy A logic high on Busy indicates that the
command is in progress,; logic low indicates
that the command sequence is complete.

DRQ A copy of the DRQ output to the CPU. A logic
high indicates that the FDC has data available
during a read operation, and requires data
during a write operation.

Lost Data Logic high indicates that the CPU did not
respond to the DRQ output in time, and as a
result; valid data was not written onto the
disk during a write operation, valid data was
not read from the disk during a read
operation.

CRC Error During the write operation, a logic high
indicates a CRC error was detected within
one or more sector I1D fields. During the read
operation, a logic high indicates a CRC error
was detected either within one or more D
fields, or a CRC error detected at the end of a
data field.

RNF Record Not Found. A logic high indicates that
the transfer operation was unable to locate
an ID field containing the correct side, track
and sector number, with a valid CRC
character.

Protected Inverted copy of the WPRT input from the
drive, during write operations. Logic high
indicates that the selected disk drive contains
a write protected disk. During read
operations set to logic low.

Not Ready Inverted copy of the READY input from the
drive. Logic high indicates that the drive is
not ready for a data transfer operation.

Floppy Disk Interface 2.6/27

Formatting Commands

The formatting commands are the three Type 3 commands,
Write Track, Read Track and Read Address. Write Track is
the command for formatting disks. The two other
commands enable the programmer to check the disk format.

Termination of the command is signified by an interrupt
request on the NMI input of the CPU. The command
operations are terminated prematurely, if the disk drive is not
ready for the transfer operation as indicated by the

READY input.

The format of these commands is detailed below.
Type 3 Commands

D7 DO Command

1 0 Read Address
1 1 1 0O 0 1 U 0 Read Track
1 0 Write Track

U = Update 8SO

Each of the three commands contain an Update SSO bit.
This bit is used to select the disk side for the formatting
operations and affects the logic state of the Side Select
Qutput {SS0), supplied to the disk drive. When U is set to
logic low, SSQO is updated to logic low (side 0}. When U is set
to logic high, SSO is updated to logic high {side 1).

Track Format

The track format used on the MicroFloppy disks is illustrated
at the end of the chapter.

2.6/28 Floppy Disk Interface

Read Address

On receipt of the Read Address command, the FDC searches
the disk for an ID field. The first 1D field encountered is then
read from the disk. The FDC transfers the six D field bytes
detailed below, from the disk to the Data Register one byte a
time. Every time a data byte is stored in the Data Register,
the FDC generates DRQ. The ID field track number is also
transferred to the Sector Register.

Byte Description

1 Track Number

Side Number

Sector Number
Sector Length (O2H)
CRC1

CRC?2

DO WN

If the FDC fails to locate an ID field within five revolutions of
the disk, the command is aborted and the Record Not Found
bit in the Status Register set. if the |D field contains an
incorrect CRC character, thisis also recorded in the

Status Register.

Failure of the CPU to read the contents of the Data Register,
hefore the register is overwritten with the next byte of data

from the disk, causes the FDC to set the Lost Data bit in the
Status Register.

Read Track

The Read Track command aliows a complete track of
information {Gaps, Headers and Data bytes) to be read from
the disk. On receipt of the Read Track command, the FDC
monitors the logic state on the Index Pulse input. On
detecting the leading edge of the pulse, the FDC transfers all
the Gap, Header and Data bytes from the track into the Data
Register on a byte-by-byte basis.

Every time a byte is transferred into the Data Register, the
FDC informs the CPU that a byte is available, via the DRQ
line. The command terminates after one full revolution of the
disk, on detecting the Index Pulse again. No CRC error
checking is carried out.

Floppy Disk Interface 2.6/28

Every time the FDC detects the ID field and Data field
address marks, it synchronises the internal decoding
circuitry, to ensure that all information following each sector
[D address mark is valid. Since the FDC might not be
synchronised to the gap information previous to the ID
address mark, this information is not guaranteed to be valid.

Failure of the CPU to read the contents of the Data Register,
before the register is overwritten with the next byte of data

from the disk, causes the FDC to set the Lost Data bit in the
Status Register.

Write Track

The Write Track is the command used to format the tracks
on the disk. All data and gap information is supplied to the
disk by building aimage of the track in memory as detailed
on the next page, and transferring the format data to the
Data Register.

On receipt of the Write Track command, the FDC generates
DRQ, to inform the CPU to write the first byte from the track
image into the Data Register.

On detecting the leading edge of the index Pulse, the FDC
transfers the first byte to the disk and requests another byte
from the CPU. The process then continues with the CPU
supplying the format bytes with the FDC generating DRQ
every time a new byte is required.

The command sequence terminates after one full revolution
of the disk, on detecting the leading edge of the next
Index Pulse.

2.6/30 Floppy Disk Interface

Track Image

Number Byte Description
of bytes | Value
required | (Hex)
80 4E Gap
12 00 Sync
3 FG Control Bytes PREAMBLE
1 FC Index Mark
50 4E Gap
12 00 Sync
3 F5 Control Bytes
1 FE D Address Mark
1 00 to 5O« Track Number
1 00 or 01 | Side Number
1 01 to 09 | Sector Number SECTOR
1 02 Sector Length (Repeated 9
1 F7 CRC character command times
22 4E Gap changing
12 00 Sync the Sector
3 F5 Control Bytes Number each
1 FB Data Address Mark time)
512 00 Data Bytes
1 F7 CRC character command
84 4E Gap
5O8xx 4E Gap POSTAMBLE
* For 80 track disks.

** Nominal figure, write operation
continues until terminated by the INTRQ
output, on detecting the Index Pulse.

Some of the bytes supplied to the Data Register are not
written onto the disk, but act as control bytes to the FDC.
These are the three bytes FHH, F6H and F7H.

F5H commands the FDC to perform two functions; write a
unique byte pattern corresponding to A1 with a missing
clock transition onto the disk and initialize the CRC generator
circuitry. F6H commands the FDC to write a unique pattern
corresponding to C2H with a missing clock transition onto
the disk.

These patterns enable the FDC to interpret the byte

foliowing the three byte pattern as an address mark, during
decoding operations. The byte F7H commands the FDC to
write the computed two-byte CRC character onto the disk.

Floppy Disk Interface 2.6/31

Failure of the CPU to write the first byte to the Data Register
before the arrival of the leading edge of the Index Pulse
causes the FDC to, set the Lost Data bit in the Status Register,
activate the INTRQ output, and abort the command.

Failure of the CPU to supply a data byte to the Data Register
on receiving DRQ after the first byte, causes the FDC to
write a byte of zeroes onto the disk and also set the Lost
Data bit. but does not terminate the command sequence.

Status Register

The format of the Status Register following a formatting
command is as detailed below. On issuing a command to the
Command Register, the FDC resets the Status Register to
monitor certain status conditions implied by the new
command. Due to internal timing delays, the Status Register
does not contain valid status information, until 14 us after
the new command is issued.

S7(56|56194|S3!52{S1|50; Status Register
Lo L Busy
| ‘ DRQ
| | lLost Data
‘ L CRCError

RNF

Logic O
Protected
Not Ready

Busy A logic high on Busy indicates that the
command is In progress; logic low indicates
that the command seguence is complete.

DRQ A copy of the DRQ output to the CPU. A logic
high indicates that the FDC has data available
during the Read Track/Read Address
operations, and requires data during a Write
Track operation.

Lost Data Logic high indicates that the CPU did not
respond to the DRQ outputin time, and as a
result; valid data was not written onto the
disk during a Write Track operation/valid data
was not read from the disk during a read
operation.

2.6/32 Floppy Disk interface

CRC Error Duringthe Read Address operation, a logic
high indicates a CRC error was detected
within the sector ID field. During the
Read Track and Write Track operations set fo
logic low.

RNF Record Not Found. A logic high indicates that
the Read Address operation was unable to
locate an ID field. During Read Track and
Write Track set to logic low.

Protected Inverted copy of the WPRT input from the
drive, during the Write Track operation. Logic
high indicates that the selected disk drive
confains a write protected disk. During read
operations set to logic low.

Not Ready Inverted copy of the READY input from the
drive. Logic high indicates that the drive is
not ready for a data transfer operation.

Force Interrupt Command

The Force Interrupt command is a Type 4 command and is
used to force the FDC to generate an interrupt via the INTRQ
output on detecting a certain condition. The conditions are
defined by setting certain bits within the command byte as
detailed below.

Type 4 Command
D7 Do

1110V][I31I12[I1T[I0

Interrupt Condition
Flags.

Floppy Disk Interface 2.6/33

Interrupt Condition Flags

13 12 11 10 Interrupt Condition

x x x 1 NotReadyto Ready Transition
x x 1 x Readyto Not Ready Transition
x 1 x x EverylndexPulse

1 x x x [mmediate Interrupt

O O O O Nolnterrupt

More than one condition can be set at any time by the
appropriate combination of Interrupt Condition Flags.

If any of the Force Interrupt commands are issued to the
Command Register when a command is already in operation,
the current command is terminated and the Busy bit in the
Status Register reset. All the other bits in the Status Register
are left unchanged.

If the command is issued when there is no other command
currently in operation, the Status Register is set to monitor
the same conditions as a Type 1 command, as previously
described.

The No Interrupt command functions in an identical manner
to the other Force Interrupt commands, as described in the

paragraph above, but does not produce an interrupt request
on INTRQ.

The INTRQ output is reset following any of the Force
Interrupt commands, by issuing any new command to the
Command Register or by reading the Status Register. The
only method available to reset the INTRQ output after issuing
the Immediate Interrupt command, is to issue the No
Interrupt command.

After issuing a Force Interrupt command to the
Command Register:

1. Another command should not be issued for at least
8 us, to allow the FDC to process the interrupt command.
2. The Status Register should not be read for 14 us to
ensure the register contains valid status information.

2.6]/34 Floppy Disk Interface

Disk Drive Gonnections

SO Drive Select 0. Control signal driven by a
single-bit control port mapped in the system
I/0 space. Active state, logic low. When
active, selects the disk drive configured as
drive 2.

DS1 Drive Select 1. Control signal driven by a
single-bit control port mapped in the system
t/O space. Active state, logic low. When
active, selects the disk drive configured as
drive 3.

HLD Head Load. Control signal driven by a
single-bit control port mapped in the system
I/Q space. Active state, logic low. When
active, engages the read/write head of the
selected disk drive against the disk.

Motor On Control signal driven by a single-bit control
port mapped in the system I/O space. Active
state, logic low. When active, starts the disk
drive motor of the selected disk drive.

§SO Side Select Output. Control signal from the
FDC used to select the side Q or side 1 of
double-sided disks. Follows the state of an
associated control bit within an internal
register. A logic high on SSO selects side O
and a logic low, side 1.

STEP Step Pulse. Pulsed output generated by the
FDC for positioning the disk drive read/write
head. Each positive going pulse moves the
head to an adjacent track location in the
direction determined by the DIRC output.

DIRC Direction Control. Control signal generated
by the FDC to determine the direction of
movement of the disk drive read/write head.
When DIRC is set to logic high, each step
pulse causes the head to step in one track
{(away from track O). When DIRC is set to
logic low, each step pulse causes the head to
step out one track (towards frack O).

Floppy Disk Interface 2.6/37

WG Write Gate. Control signal generated by the
FDC. Active state, logic high. When active,
enables current to flow into the disk drive
read/write head.

WD Write Data. Qutput for writing MFM encoded
data to the disk drive.

RAW RD Raw Read. Input to the FDC for MFM
encoded data from the disk drive.

READY Input to the FDC from the disk drive. When
set to logic high, indicates that the selected
disk is ready for data transfer operations.
When set to logic low, indicates that the
selected disk is not available. In this condition
attempted data transfer operations between
the FDC and the disk drive are inhibited, and
cause an active interrupt request to be
generated on INTRQ. READY also sets an
associated control bit within an internal
register according to the logic state on the
control line.

TROO Track Q0. Control input from the disk drive.
When TROO is set to logic low, indicates to
the FDC that the read/write head of the
selected drive is positioned over track O of
the disk.

1P Index Pulse. Control input from the disk
drive. A negative going pulse generated every
revolution of the disk, which informs the FDC
of the start of the first sector of each track.

WPRT Write Protect. Control input from the disk
drive. When WPRT is set to logic low, any
attempted write operation to the selected
drive is inhibited. WPRT also sets an
associated control bit within an internal
register according to the logic state in the
control line.

2.6/38 Floppy Disk Interface

Data is recorded on a disk in concentric circles, known as
tracks. When a disk is inserted into the disk drive, the Auto
Shutter is opened to allow the read/write head of the disk
drive access to the disk surface.

When the head is loaded, the head makes physical contact
with the radial slot of magnetic material exposed, when the
shutter is open. Information on a track is read and written

serially as the disk rotates within its protective plastic shell.

Each track of the disk is divided into nine sectors by software
formatting (soft sectoring). The sectors are recorded onto
each track of the disk by issuing a format command to the
FDC and then writing all the bytes onto the disk as illustrated
in Figure 2,

The start of each track is marked by a single index pulse,
which is generated by the disk drive every revolution of
the disk.

Each sector has an identification {ID) field and a data field,
separated by gaps of unintelligent information.

The gaps are required to allow the FDC to process
information from the disk during disk reads, and also to take
into account variations in drives, such as motor speed
variations.

The ID field defines the data field that follows, by specifying
its track number, side number, sector number and length of
the data field in bytes. '

Both the ID and data fields begin with an address mark and
end with a two-byte cyclic redundancy check (CRC)
character for detecting errors in the previous field.

Different address marks are used to distinguish between the
two fields.

All the serial data on the track {ID fields, data fields and gap
information) are recorded on the disk by Modified Frequency
Modulation (MFM). In MFM encoding, both serial data bits
and clock pulses are interleaved into the data stream.,

Floppy Disk Interface Z2.6/36

In order to distinguish the address marks on the disk from
data bytes which may be identical, the address marks are
recorded with missing clock pulses in predefined locations.
The address marks are the only bytes on the disk with
missing clock bits, and are produced by the FDC during
formatting. These are then used by the FDC for recognition
and synchronisation during disk accesses.

{xop| ety
TRAG |0 FON

|
|
|
|
|
|
|
|
|
| _[eineeu

EL
0g

[a]8]
[A8
INAE | veusn

24]34
L]E
HHYK
KA

| deg

JeUII0 YoB4)| "7 84nBiq
b X X Tad Y] oo EL s xx g0 12 XX wx” TEA[1Y
1 1 Z1g [t [&] ZL Zz i t 1 L | 1 L [€
P) .) AV
22up | 12u3 | wiva |ssauoov | amas | zaso | zomo | wguo [MORET| 9N | ON | ON | {sSwmov | o
wivd : al
[31anviscd Jdvo [ouadwivg Jevo [e | 7§ FTawe [omsidwiva Tdwvo | aisidor | evo | 012wivg | dvo | a13EC1 | 318We3Ed |
|~——»—6 Jﬁm:——‘ |-|7z-l°l-‘n_vs = ! -

i HNDaE

3
Qs

oo
Zl

Ekd
*d
gdin

Eld
BES
O Ced

2.6/40 Floppy Disk Interface

Saerial Interface

Contents

introduction
Details
General
SIO Overview
S0 Architecture
Processor Interface
Write Register Definition
Write Register Summary
Write Register O
Write Register 1
Write Register 2
Write Register 3
Write Register 4
Write Register b
Write Register 6
Write Register 7
Read Register Definition
Read Register O
Read Register 1
Read Register 2
S10 Interrupt Sequence
Keyhoard/Mouse Data
Sound Generation
Channel A Programming Details
Copy Registers
Initialisation
RS232C Communications
General
RS232C Connector Detail
Channel B Programming Details
Copy Registers
Setting the Base Vector
Asynchronous Communications
SI0 Pin Detail
System Connections
Channel A Connections
Channel B Connections

Hlustrations

1. Serial interface
2. RS232C Connector detail

Serial Interface 2.7]1

ntroguction

The Serial Interface is located on the System Board and
consists of the elements of circuitry as illustrated on the
block diagram Figure 1. The interface provides two separate
serial channels; one channel for receiving data from the
Infra-red (IR} Keyboard or Mouse and also for generating
sound; the second channel for commmunication between the
F 1 and external equipment via an RS232C link, The Serial
Interface also provides part of the system interrupt structure.

The receive channel for the Keyboard/Mouse data is
pnrogrammed to operate in synchronous mode (Monosync)
at a data rate determined by the incoming data stream. It is
supplied with keyboard/mouse data via the IR receiver board
which decodes the incoming data and converts it into an
acceptable serial waveform. {Details of the IR Receiver

Board are discussed in the chapter headed Systems Unit).

The transmit channel for generating sound is also
programmed to operate in the synchronous mode Monosync
(to match the channel requirements for the keyboard data).
Sound is produced by transmitting the synchronous
waveform to a loudspeaker, via a filter/amplifier circuit.

The programmer can control the frequency, waveform
shape, volume, and duration of audio output, and has the
facility to produce either simple tones or complex
synthesized sounds. The frequency of the audio output is set
by the transmit baud rate for the channel, which is supplied
from the System Board Timer (the Z80 CTC).

The RS5232C channel can be programmed to operate in
either asynchronous or synchronous modes, with transmit
and receive baud rates determined either via the Z80 CTC or
via the external data communications equipment.

2.7]2 Serial Interface

The RS232C interface is able to support:

1. Asynchronous communications with 5, 6, 7 or 8 bits
per character and various choices of stop bits and
parity sense.

2. Bit oriented synchronous communications, such as
SDLC and HDLC.

3. Byte oriented synchronous communications, such as
Monosync and Bisync.

The interrupt structure operated within the system is formed
by the interrupt handling facilities within the Z80 SI0 and
the Z80 CTC. These two devices operate together to provide
a prioritised interrupt structure. Both devices can generate
an interrupt and also produce an interrupt vector to indicate
the cause of interrupt. This is described in detail in the
chapter headed “Interrupt Control”.

Serial Interface 2.7/3

General

The Serial Interface consists of; a serial input/output
controller, a data selector, a number of line drivers/receivers,
a signal conditioning circuit which processes the incoming
keyboard/mouse data, an amplifier and associated
loudspeaker for producing sound, and a connector (25 pin
D-type female connector for the RS232C channel).

_ 280 CTe
NT
ToZ IEL 101
INTERRUPY J_
REQUEST & 8¢ [P 2T CLOCKS
BOBEINTR X > bgf———Tx CLOCKS
4 Q—Rx CLOCHS
¥ Vv
TeCKA IFQ TWOKB RxCKE R523IC
| | 2RO SO LINE DRIVERS!
i | | | HECEIVEAS
[S T
U I_ R0 R DATA
233MHz— [K ot I . QB{ <
I { { X » e Tx 0aTA
I
Lot L RSB P ——Jrars
| ¢ CHAMNEL B ¥ ¥
1 HS232 1 5B
0o ! & ——paTa
DATA BUS Mo i } : =%
o7 J| l - b ¥ TR q4—-crs
B Ik b _D_Diq_m &G—DsR
contRoLous Wiomad | b d
RE L ——
['1
I | cRANNEL A parT) | _DEDA
{ — — = g—— &4——DCo
|] 75232 I
Sioseec — | EE t I -1
~ - .]
R e - G b PRINTER
I cranmeLapaar 1 _CT8A] g susy | oo
- I | PIINTER STATUS | “
A1—.mp c:Q] PORT
' I
L
D4
L r .']I_ S B AUDID QUTEUT TO AMPLIFIER
— | CHANNEL A (PART) 5TEA
! SQUAD :-w Sl Y
- T
| S .|
| S " ascea
I CHaNNEL & (paaT | ¢ I} ——— xevs0aALy
EREYBOARD/MOUSE | _PxDAJ 4 DECQOING MOUSE
d - DaTa
STNCA
Figure 1. Serial Interface %
CIRCLITRY

2.7{4 Serial lnterface

The major circuit element of the Serial Interface is the serial
input/output controller which is a Zilog Z80 SI10/2. The SIO
is a programmable device which incorporates all the circuitry
for interfacing between the 8086 CPU and the two serial
channels. A description of each connection to the SIO is
provided at the end of this chapter.

Due to the relative complexity of the SIO compared with
other programmable devices on the Interface Board, a brief
overview of the device is presented in the following
paragraphs.

Subsequent paragraphs describe the internal structure and
the utilisation of the device within the system in more detail.

SI10 OQverview

The SI0 is a peripheral device, which performs the function
of an intelligent two-channel parailel to serial/serial to
parallel converter.

The two channels {designated Channel A and Channel B} are
totally independent of each other and can be programmed to
operate in either asynchronous or synchronous serial data
communications modes.

Channel A is used as a bi-directional channel with the receive
channel set for receiving synchronous data from either the
keyboard or mouse and the transmit channel set for
transmitting a synchronous datastream to the sound output
circuit.

Channel B is available to the programmer for use as a full
duplex, multi-mode RS232C link.

Both channels have to be initialised with the required serial
data communications mode prior to any transmission or
reception. The programmer is then able to view the SI0O as
two simple parallel input/output ports for the majority of
data transfer operations; one bi-directional port for

Channel B: one input port for channel A - Keyboard/mouse
communications, one output port for channel A - sound output.

Serial Interface 2.7/5

The SIO provides all the necessary facilities for organising
data transfers over the two serial channels. These include:

1. Conversion of the parallel data into the correct serial
data format for transmission over the selected serial
channel. in asynchronous modes, this involves the
automatic insertion of start, stop and parity bits, and
assembling the parallel data into the correct number of
serial bits per character.

2. Conversion of the input serial data from the serial
channels into parallel form, and checking the incoming
data for errors. In asynchronous modes, this invalves
stripping the start, stop and parity bits from the serial
data and checking for parity and framing errors.

When operating in synchronous modes, similar automatic
facilities are available within the SIO, dependent on the
selected mode,

In Bisync and Monosync, pre-programmed sync characters
and CRC characters can be automatically inserted during
transmissions. The SIO strips sync characters from received
data, and also analyses the received data for errors, utilising
the received CRC characters.

In SDLC and HDLC, the S|0 performs the following
functions:

1. Abort sequence generation and detection.
2. Zero insertion and deletion.

3. Flag insertion between messages.

4. Address field recognition.

5. |-field residue handling.

6. CRC generation and detection.

The baud rates for the two channels are determined by clock
sources external to the S10. In asynchronous modes, the
clocks can be dividad internally within the SIO under
program control, prior to being used to set the baud rates.
This facility is not available in synchronous modes.

tach channel also provides inputs and ocutputs which are
specifically tailored to function as modem control lines for
co-ordinating serial data transfer operations. The outputs are
under direct control by the programmer.

The inputs can be monitored under software control by
polling, or be programmed to generate an interrupt to the
CPU. These control lines can also be redefined as general
purpose input and output control signals.

2.716 Serial interface

The 810 can also be programmed to generate interrupts to
signal to the processors the status of various transmit and
receive conditions in the two communication channels.
These include; receive data available, transmit data required,
and the detection of various error conditions.

The interrupt structure of the SIO is such that on generating
an interrupt to the CPU, it can also produce an interrupt
vector internally which defines the cause of the interrupt.
This can then be used by the CPU to point to an associated
service routine. The vector is obtained from the SIO by the
CPU generating an interrupt acknowledge cycle.

The interrupt method of communication between the SI10
and the CPU is the one adopted within the Apricot. The SIO
only generates an interrupt to the CPU when a channel
requires a specific servicing routine to be carried out, (e.g.
keyboard data available} thus leaving the CPU free to service
the other devices on the board.

S10 Architecture

Internally, the S10 consists of four areas of circuitry:

1. A Processor interface.

2. Internal interrupt control logic.

3. The two independent serial communication channels,
channel A and channel B.

The processor interface handles all communications via the
data bus between the CPU and a series of internal registers,
associated with each of the two serial channels. These are of
three different types; data registers, command registers and
status registers.

Both channels have two data registers each which are
accessed by the CPU; one handles the transmit data from
the 8086 - transmit buffer, and one stores receive data
from the serial channe! - receive buffer.

The mode and operation of each channel is determined by
the contents of the command registers (Write Registers).
These are initialised with control words prior to any data
transfer over the two serial channels, and may be modified
as data transfer operations proceed.

Seven Write Registers are associated with each channel. An
eighth Write Register, which is focated in channel B is shared
by both channels.

Serisl interface 2.7/7

The information contained in the status registers (Read
Registers) indicate the status within each channel. Two Read
Registers are associated with each channel, A third register
accessed via channel B is common to both channels.

The interrupt control logic section of the S10 assigns the
priority to the various sources of interrupts, generates the
interrupt output to the CPU and produces the interrupt
vector.

The priority of the interrupts is fixed with channel A always
assigned a higher priority than channel B. The order of
priority assigned within each channel is receiver interrupts
(highest priority), followed by transmitter interrupts,
followed by external/status interrupts (lowest priority).

Separate transmit and receive data paths are provided within
the two serial communications channels.

Receive Path

The receiver ports are quadruply buffered by an input shift
register and three storage registers. The shift register
converts the incoming receive serial data into a paralle! byte.

The three storage registers are configured in a FIFO {first in
first out} arrangement. The first parallel data byte from the
shift register is ioaded into the hottom of the FIFQ stack and
then shifted through to the top at a rate, determined by an
internal clock.

The register at the top of the stack is the receive buffer
which acts as the storage buffer for the receive character
until read by the processors. Reading the character in the
receive buffer automatically transfers the next character (if
any) to the top of the stack.

Error flags associated with each receive character are also
buffered by a similar arrangement. These are loaded into the
register of a parallel receive error FIFQO stack at the same
time as the character. Each time the receive character is
shifted through the character FIFO stack, the error flags are
moved accordingly. The top of the receive error FIFO stack is
one of the Read Registers.

The contents of this Read Register reflect the status of the
character stored in the receive buffer, but may also contain
any receiver overrun and parity errors received from
previous characters. These two error conditions remain
within the status register, even when new character error
flags are loaded, until cleared by an error reset command.

2718 Serial interfsce

If the character FIFO stack is full (i.e. contains three
characters) and the CPU fails to read the character within
the receive buffer before another receive character is
supplied to the stack, the last character placed in the stack is
overwritten with the new character, and the receiver overrun
flag is recorded in the corresponding register in the receive
error FIFO stack.

The first two characters in the stack are never overwritten,
even if more characters are received: the last character is
continuously overwritten.

Error conditions stored in the FIFO stack can be
programmed to generate an interrupt to the CPU, on being
loaded into the Read Register at the top of the stack.

In the asynchronous mode, using 8 bits per character, the
serial receive data is stripped of the start, stop and parity
bits, prior to being supplied to the serial shift register.

For character lengths of less than 8 bits, the receiver circuits
automatically insert logic 1’s in the most significant places to
assemble a byte of data, if a parity bit is not included with the
character. |f a parity bit is included, the parity bit is also
assembled with the bits of the character, with any remaining
bits set to logic 1.

For example, a B-bit receive character with a parity bit is
assembled in the receive buffer in the following format:

1(1]|F |D4,D3|(D2|D1{DO

D = 5-bit character.
P = Parity bit.

In the byte oriented synchronous modes, Monosync and
Bisync, receive data is not transferred to the receive FIFO
register stack until character synchronisation is established.

Detecting a byte of receive data which matches a sync
character stored in a Write Register establishes
synchronisation in Monosync. Detecting two consecutive
bytes of receive data which match the sync characters
stored in two of the Write Registers establishes
synchronisation in Bisync.

Serial Interface 2.718

Searching for the character sync is achieved by
programming the channel to operate in the first phase of the
synchronous reception process, termed the hunt phase. The
second phase is the actual reception of data, where the
recetve data is automatically transferred to the FIFO stack
after detection of the character sync.

Also included in the receive path in synchronous modes, is a
CRC error detection circuit which sets an error flag
according to the result of CRC comparisons.

The receiver circuits in the bit oriented synchronous modes
operate in a similar manner to the byte oriented modes,
operating with two separate phases, a hunt phase and a
receive phase. Receive data is not transferred to the receive
FIFO register stack until the hunt phase is sucessfully
completed.

This requires detecting an opening flag sequence
corresponding to a flag pattern, stored in one of the Write
Registers. Reception is terminated on detecting the closing
flag at the end of the message (EOM). This prevents any
further data being supplied to the FIFO register stack. The
receive data is also supplied to the CRC error detection
circuits.

Transmit Path

The transmitter sections of the serial channels consist of an
8-bit data register {the transmit buffer}, supplied with
character data from the CPU, and a 20-bit transmit shift
register. The shift register converts the parallel data in the
transmit buffer into serial format and also performs a variety
of other functions depending on the mode of operation.

In the asynchronous mode, the data from the transmit buffer
is automatically formatted with start, stop and parity bits
within the shift register, prior to transmission.

In Monosync and Bisync, the shift register is loaded with the
sync characters stored in the Write Registers, at the
beginning of the message, and then data from the transmit
buffer as transmission proceeds. The shift register also
supplies the serial data to the CRC generator, which
produces the two byte CRC at the end of the message.

In the bit oriented modes, the shift register is loaded with the
flags stored in the Write Register, at the beginning and end of
the message. The shift register supplies the serial data to the
CRC generator which generates the 2-byte CRC at the end
of the data field, and to the transmit data output.

2.7]10 Serialinterfave

For character lengths of less than 8 bits, the characters sent
to the transmit buffer have to be right justified, by the
programmer. The logic state of the unused bits within each
character byte (the MSB) are immaterial for character
lengths of G and 7 bits, since the extra bits are automatically
ignored by the SIO.

or a b-bit character, the unused bits have to be
programmed with logic O’s. Character lengths of less than 5
bits require a combination of logic 1's and logic O’s, to be
inserted in the MSB as detailed in a later section.

Processor Interface

The connections to the SI0 processor interface are detailed
in the table “System Connections” at the end of the chapter.
The interface handles the transfer of data, commands and
status information (via the system data bus), between the
CPU and the series of addressable registers within the SI10.

The system software views the SIO as four bi-directional
peripheral ports, located in the system !/O space. The port
addresses, as defined by the S10 select and the system
address bus connections, are detailed below.

Address Port

20H Channel A Tx/Rx data
22H Channel A commands/status
24H Channel B Tx/Rx data
26H Channel B commands/status

Writing data to the /0O address location 20H loads data into
the transmit buffer of channel A (sound data for
transmission); reading data from the same |location accesses
data stored in the receive buffer of channel A
(Keyboard/mouse data).

Writing data to the |/O address location 24H loads data into
the transmit buffer of channel B {RS232 transmit data);
reading data from |/ O address location 24H accesses data
stored in the receive huffer of channel B (R$232 receive
data).

Writing data to the Write Registers {command registers} and
reading data from the Read Registers (status registers) in the
two channels, generally requires two data transfers.

Seriaf Interface 2.7]717

RES

The first transfer is a write to the commands/status address
of the channel, and provides the S10 with a pointer to
determine the register for the next read or write operation.

If the next operation is writing to the command/status
address location, a command byte is loaded into the Write
Register specified by the pointer. If the next operation is
reading from the commands/status location, a status byte is
accessed from the Read Register specified by the pointer.

Fotlowing the second transfer operation the pointer within
the SIO is always cleared to zero.

Write Register Definition

Each channel contains seven Write Registers, which
configure the SI0 to match the desired mode and
application. Five of these registers are command registers
which define the basic mode of operation (e.qg.
asynchronous), and configuration of the channel within the
mode (e.g. number of bits per character, etc.).

The two other registers are sync character registers. An
eighth register, which is written to via channel B, is common
to both channels and is programmed with the base address
of the interrupt vector.

A summary of the functions of the Write Registers is
provided in tabular format below. This is followed by a more
detailed description of the commands for each individual
register.

The only constraint on the order of programming the
registers is that initialising each channel of the SI0 following
a hardware system reset or a software channel reset,
requires the parameters of Write Register 4 to be issued
before the parameters/commands of Write Registers 1, 3, b,
(6 and 7 if used).

As a general rule, if changing from one operational
configuration to another (e.g. 8-bit asynchronous to 7-bit
asynchronous), the whole initialisation sequence should be
repeated with the new parameters.

2.7]12 Serial interface

Write Register Summary

WRO Write Register O. Allows the programmer to perform
a number of basic reset functions in addition to
acting as the pointer to select the register for the
next command/status transfer operation.

WR1 Write Register 1. Contains the bits which select the
interrupt mode, and allows the interrupts to be
enabled/masked.

WR2 Write Register 2. This register is programmed with
the base address of an interrupt vector and is
addressed through channel B only.

WR3 Write Register 3. The bits written to this register
configure and control the channel receiver circuitry.

WR4 Write Register 4. This register is programmed with
bits which select the mode of operation
{asynchronous or synchronous), and some of the
operational parameters of the selected mode.

WRb5 Write Register 5. The bits written to this register
configure and control the channel transmit circuitry.

WR6 Write Register 6. This register is programmed with
a sync character in Monosync and Bisync, and a
check address in the bit oriented synchronous
modes.

WR7 Write Register 7. This register is programmed with a
sync character in Monosync and Bisync, and a flag
character in the bit oriented synchronous modes.

Serial Interface 2.7]/13

Write Register 0

D7|D6|D5|D4|D3

a
3V
o
O
O

. WRO
Pointers

Register O
Register 1
Register 2
Register 3
Register 4
Register b
Register &
Register 7

b, 0000 —
P, OO0 —

Command Operation

Null code

SDLC Send Abort

Reset Ext/Status Interrupts
Channel Reset

Reset Rx Int. on 1st character
Reset Tx Int. pending

Error reset

Return from Interrupt {Ch.A only}

0 -QC-0—-0Q

Auxiliary Resets

Null code

Reset Rx CRC checker

Reset Tx CRC generator

Reset Transmit Underrun/EOM latch

=00 =0

Pointers (DO to D2)

These bits signify the register for the next command/status
transfer operation. if the next operation is a write, the
pointer specifies a write register. If the next operation is a
read, the pointer specifies a read register. Following a read
or write to any register {except WRO}, the pointer poinis to
register O (i.e. Write Register O or Read Register 0).

2.7/ 14 Serial Interface

Commands (D3 to D5)

These bits specify eight different commands, the function of
which are detailed below.

1. Null Code. This command enables the programmer to
specify the next register for a command/status transfer
using the pointer bits, without affecting the operation
of the SI10.

2. SDLC Send Abort. Used only in the bit oriented
synchronous modes. The command causes the S10 to
generate an abort sequence which informs the receiver
of data from the S10 to terminate reception.

3. Reset Ext/Status Interrupts. After an External interrupt
(caused by a change of state on a modem control
input), or a Status interrupt {caused by detecting a
break/abort condition in receive data or a transmit
underrun/EOM condition in transmit data),
corresponding status bits within Read Register O are
latched. This command re-enables the bits and allows
further interrupts to occur.

4, Channel Reset. This command performs the same
function as a hardware reset but on the specified
channel only. Issuing the command to channel A also
resets the interrupt logic, clearing any current and all
pending interrupts. All Write Registers in the channel
must be reprogrammed, following the command.

5. Reset Rx Interrupt on First Character. If the Interrupt
on First Receive Character Mode is in operation (bits 3
and 4 of WR 1), an interrupt is generated on receiving
the first character. At the end of the message, this
command is issued to reactivate the mode.

6. Reset Tx Interrupt Pending. If the Transmit interrupt is
enabled (bit 1 of WR 1), the SIO generates an interrupt
every time the transmit buffer is empty. Issuing the
Reset Tx Interrupt Pending command, resets the
transmit interrupt, and prevents the interrupt being
raised again until the transmit buffer is loaded with a
character and becomes empty again.

7. Error Reset. Parity and Overrun errors are latched into
Read Register 1 (the status register at the top of the
receive error FIFQ stack}. These error conditions
remain within the register until the Error Reset
Command is issued.

Serial Interface 2.7]71&

8. Return from Interrupt. This command is used to signify
to the SI0 that the interrupt routine in service specified
by the last interrupt vector read by the CPU has been
completed. The command is issued through channel A
only and resets the in-service interrupt within the SIQ,
and allows the highest priority interrupt pending (if any)
to interrupt the CPU.

Auxiliary Resets (D6, D7}

These bits specify four commands, the function of which are
as described below.

1. Null Code performs the same function as previously
described for the Null Code of the Command bits.

2. Reset Rx CRC Checker. This command resets the CRC
error detection circuitry located in the channel receiver
circuit.

3. Reset Tx CRC Generator. This command resets the CRC
generator located in the channel transmitter circuit.

4. Reset Tx Underrun/EOM. When the S|0 detects either
a Transmit Underrun condition or the End of a Message
(EOM), a corresponding bit is set within Read Register
O {bit 6). The bit is reset by issuing this command.

2.7/18 Serial Interface

Write Register 1

D7|DG6{D5(D4|(D3|D2|D1 WR17

Do
I Ext. Int Enable

Tx Int Enable

L Status affects vector
(Channel B only) -

Rx Int control

Mask Rx Interrupts.

Interrupt on 1st. Rx character.
[nterrupt on all Rx characters,
parity affects vector.

1 1 Interrupt on ail Rx characters,
parity does not affect vector.

= OO
S -0

Ready Control

Ready on Rx/Tx

Ready Function

Ready Enable

Ext. Int Enable {DO)

The logic state of this bit determines whether the
External/Status interrupts are enabled {logic high) or

masked (logic low). If enabled, an interrupt is produced as a
result of the following conditions.

1. Transitions on the modem control lines; DCD, CTS.
2. Detecting a break or abort condition in the receive data.
3. At the start of transmission of either CRC or sync

characters, in synchronous modes, when the Transmit
Underrun/EOM latch becomes set.

Serial Interface 2.7/17

Tx Int Enable (D1}

The logic state on this bit determines whether the transmit
interrupt is enabled (logic high) or masked (logic low). If
enabled, an interrrupt is produced when the transmit buffer
becomes empty.

Status Affects Vector (D2)

This bit is active only in channel B. If set to logic low, the
interrupt vector programmed in Write Register 2 is written
into the Read Register 2 in channel B unmodified. if set to
logic high, the interrupt vector is modified according to the
interrupting condition as detailed below.

V7IV8 VB VA |V3|V2{V1iV0 Interrupt Vector
| | ! |

Modified Vector bits

Vector bits as programmed
into Write Register 2

Madified Vector Bits

V3

<3
N
<

Interrupt Condition

Ch.B Transmit buffer empty

Ch.B Ext/status Interrupt

Ch.B Receive Character Available
Ch.B Special Receive Condition*
Ch.A Transmit buffer empty

Ch.A Ext/status Interrupt

Ch.A Receive Character Available
Ch.A Special Receive Condition*®

DO = OO
D0 wd O O e O

* Special Receive Conditions include Parity error, Rx Overrun
Error, Framing Error, End of Frame (SDLC).

27118 Serial Interface

Rx Int Control bits (D3, D4)

These two bits select the various receive conditions able to
generate an interrupt.

1. Mask Rx Interrupts. Disables all receive interrupts.
2. Interrupt on 1st Rx Character. Enables an interrupt to
be generated on detecting:

(a) The first receive character in the receive buffer.
(b) Any special receive condition.

3. Interrupt on all Rx Characters, parity affects vector.
Enables an interrupt to be generated on detecting:

{a) Any receive character within the receive buffer.
(b) Any special receive condition.

4. Interrupt on all Rx Characters, parity does not affect
vector. Enables an interrupt to be generated on
detecting:

(a) Any receive character within the receive buffer.
(b) Any special receive condition apart from a
Parity error.

Ready controls (D5 to D7)

These three bits control the state of the W/RDY outputs
from the SIO and are not connected in the F1. The state of
the three bits is thus immaterial.

Write Register 2

D7|D6|DS{D4A|(D3|D2ID1|DC WR2
| i

Interrupt Vector (Channel B only)

Write Register 2 is programmed with the base address for
the interrupt vector (50H) read from Read Register 2 during
the interrupt cycle. If the Status Affects Vector bit within
Write Register 1 (WR 1, D2) is set to logic high, the interrupt
vector read by the programmer is the base address with the
L SB modified as previously described. If the Status Affects
Vector bit is set to logic low, the interrupt vector in the Read
Register corresponds to the base address unmodified.

Serial Interface 2.7]19

Write Register 3

D7/D6 D5 D4 |D3|D2 D1

WR3

DO
l_ Rx Enable

Sync Char Load Inhibit

Address search mode (SDLC)

Rx CRC Enable

Enter Hunt mode

| Auto Enables

0 O b bits/character
1 O 6 bits/character
0 1 7 bits/character
1 1 8 bits/character

Rx Enable (D0O)

It set to logic high, the receiver circuits are enabled to accept
data. If set to logic low, the receiver circuits are disabled.

Sync Character Load Inhibit (D7)

Setting this bit to logic high prevents any sync characters
being loaded into the receive FIFO stack.

Address Search Mode (D2)

If a bit oriented synchronous mode is selected and this bit is
set to logic high, only messages with an address (following
the opening flag) matching either the programmed address
in Write Register 6 or the global address (FFH), are accepted
by the receiver circuits. If set to logic low, no address search
is carried out.

Rx CRC Enable (D3}

This hit enables (logic high}/disables {logic low) the receiver
CRC error detection circuits.

2.7]20 Serial Interface

Enter Hunt Mode (D4)

The Hunt mode in synchronous modes is automaticaily
entered following a reset. If character synchronisation is lost
{any Sync mode) or the incoming data is not required
(SDLC), the hunt phase can be re-entered by setting D4 to
togic high.

Auto Enables (D5)

Setting this bit to logic high allows the two modem input
controi lines, DCD and CTS to control data transfers over the
serial data link. DCD controls the SIO receiver circuits, CTS
the transmitter circuits.

Rx bits character (D6, D7)

The combination of these two bits determine the number of
receive bits assembled to form a character.

Write Register 4
D7 |D6|D5|{D4|D3|D2[{D1{DO WR4
L Parity Enable
Parity Even/odd
Mode Select
0O O Enable Sync Mode
0 1 1 stop bit/character
1 0 1.bstopbits/character
1 1 2 stop bits/character
Sync Mode
0 O Monosync
0 1 Bisync
1 O SDLC/HDLC
1 1 External sync

0 O x1clockrate
0 1 x16 clock rate
1 0O x32clock rate
1 1 x64 clock rate

Serial Interface 2.7/27

Parity Enable (DO)

If this bit is set to logic high, a parity bit is added to the
transmit character data and is expected in receive data.

Parity Even/Odd (D1)

This bit is used when the Parity Enable bit is set to logic high
to determine the sense of the parity code in the transmit data
and the expected parity code in receive data. Even parity is
signified by setting this bit to logic high, odd parity by setting
the bit to logic low.

Mode Select (D2, D3)

The combination of these two bits differentiate between
asynchronous and synchronous modes of operation and also
specify the number of stop hits added to the transmit data in
the asynchronous mode. The receiver circuits always check
for one stop bit in the receive data, regardless of the number
of stop bits in the transmit data.

Sync Mode (D4, D5)

If synchronous mode is selected by the Mode Select bits,
these bits determine the type of synchronous mode, for
transmit and receive data.

Clock Rate (D6, D7)

These bits specify the multiplier applied to both the transmit
and receiver input clock rate prior to being used to set the
transmit and receive baud rates. For synchronous modes the
x1 clock rate must be selected. Any rate may be selected for
the asynchronous mode, apart from the x1 rate.

27122 Serial Interface

Write Register b

D7|D6 D5 (D4 |D31D2 WRb5

D1|DB0
’ l___Tx CRC Enable
RTS

CRC-16

Tx Enable

Send Break

Tx bits/character

0 O bBbits/character or less
1 O 6 bits/character
0O 1 7 bits/character
1 1 8 bits/character
DTR
Ix CRC Enable (DO)

This bit enables {logic high)/disables (logic fow) the CRC
generator in the transmit data path.

RTS (D1)

This bit controls the state of the modem control output
Request to Send (RTS). When the RTS bit is set to logic high,
the RTS output is set active (logic low/line spacing). When
the RTS bit is reset to logic low, the RTS output is reset to the
inactive logic high state (line marking).

In asynchronous mode, the RTS output is not reset by
setting the RTS bit low, until after transmission of the
character in the transmit buffer.

CRC-16 (D2)

This bit selects the CRC polynomial used by the transmitter
and receiver circuits. If set to logic high, the CRC-16
polynomial (X6 + X12 + X5 + 1) is selected. If set to logic
low, the SDLC polynomial (X6 + X158 + X2 + 1) is selected.

Serial interfoce 2.7/253

Tx Enable (D3)

This bit acts as the enable/disable control signal for the
transmitter output. Character data in the tfransmit buffer
cannot be transmitted or a break condition sent unless this
bit is set to logic high. If set to logic low, the transmit cutput
is held in the line idle marking condition.

Send Break (D4}

When set to logic high and the transmitter is enabled, the
transmit data output is forced to the spacing condition,
regardless of any data transmission in progress.

Tx bits/character (D5, D6}

The combination of these two bits specify the number of bits
per character in the transmit data. Characters have to be
assembled into the correct format by the programmer. All
character lengths of less than 8 bits have to be right justified,
with the following format.

D7 D6 D5 D4 D3 D2 D1 DO Bits/Character
0 D b D D D D D 7
O 0 b D D D D D 6
0O O 0 D b D D D B
1 ¢ 0 0 Db D D D 4
1 1 0 0 0 D D D 3
1 1 1 0 O O D D 2
1 1 1 1 0 0 0 D 1

D = Character data bits

DTR (D7)

This bit controls the modem control output Data Terminal
Ready (DTR). When the DTR bit is set to logic high, the DTR
output is set to the active state {logic low). When reset to
logic low, the DTR output is reset to the inactive logic high
state.

2.7/24 Serial Interface

Write Register 6

D7|D6|D5|D4|D3ID2|D1{DO WR6E

Sync bits/Address
Write Register 6 is programmed with:

1. The transmit sync character in Monosync.
2. The 8 LSB of the 16-bit sync character in Bisync.
3. The 8-bit frame address byte in bit oriented modes.

Write Register 7

D7ID8|DE|DA|(D3 D2|{D1|DO WR7

Sync bits/Flag
Write Register 7 is programmed with:

1. The receive sync character in Monosync.
2. The 8 MSB of the 16-bit sync character in Bisync.
3. A flag character in bit oriented modes.

Read Register Definition

Both channels contain two Read Registers each {RRO and
RR 1), which define the status within the channel. A third
Read Register (RR2), accessed through channel B, contains
a copy of the interrupt vector which indicates the S10
interrupt routine (if any} currently in service.

Reading the contents of Read Registers 1 and 2 requires a
two byte transfer operation. The first, a write operation to
the commands/status address location using the pointer bits
of Write Register O to specify the Read Register: the second,
the actual read operation from the same address to access
the contents of the register. Following any read or write
operation {apart from writing to Write Register Q), the
address pointer within the SIO is always cleared to zero,
allowing the contents of Read Register O to be accessed
using a single read operation.

Serial Interface 2.7[25

Read Register D

D7(D6iD5|D4]D3|D2/D1DO RRO

L Rx Char Available

Interrupt Pending

Transmit Buffer Empty

DCD

Sync/Hunt

CTS

Transmit Underrun/EON

Break/Abort

Rx Char Available (DO)

This bit is held at logic high until all characters within the
receive FIFQ stack are read. Logic low indicates that no more
receive characters are available.

Interrupt Pending (D1)

This bit only has significance in channel A. In channel B, the
bit is always at logic low. When set to logic high, the bit
indicates that an interrupt condition is present within the SIO.

Transmit Buffer Empty (D2)

This bit is set to logic high every time a character is
transmitted out of the transmit buffer. It is reset to the logic
low inactive state by refoading the transmit buffer with a new
data character.

DCD (D3)

The DCD bit indicates the state of the modem control input
Data Set Ready (DSR) in channel B and the state of the
modem control input DCD in Channel A. The state of the bit
is latched every time any external/status interrupt condition
occurs, and remains in the latched state until reset by writing
the reset external/status interrupt command to Write
Register O.

2.7{26 Serial interface

Therefore, to ensure that the current state of the DCD/DSR
input is obtained, the bit should be read immediately
following a reset external/status interrupt command. The
DCD bit indicates the inverse of the state on the DCD/DSR
input.

Sync/Hunt (D4)

This bit only has any significance in channel B. The bhit
reflects the phase of the synchronous receive operation.

Initiating the Hunt phase causes the bit to be set to logic
high. {i.e. On reset or setting the Enter Hunt Mode bit in
Write Register 3).

On achieving character synchronisation, the bit is set to logic
low as the receive phase begins and remains in this condition
unless the Hunt phase is initialised again.

CTS(D5)

This bit functions in a similar manner with regard to the
latching process, but indicates the inverse of the state on the
Clear to Send input (CTS).

Transmit Underrun/ EOM (D6)

In synchronous modes, the bit is set to logic high following a
system/channel reset, allowing sync/flag characters to be
sent when the transmit buffer becomes empty. When the
reset transmit underrun/EOM command is issued to Write
Register O, the transmit underrun/EOM bit is set to logic low.
This enables CRC characters to be automatically sent instead
of the sync/flag characters.

Break/Abort (D7}

In asynchronous modes, this bit is set to logic high, when a
break is detected in the receive data. The bit is not reset until,
areset external/status command is issued to Write Register
O and the break condition is removed.

In the bit oriented modes, the bit is set to logic high on
detecting an abort sequence in the receive data. The bitis
reset to logic low on loading Write Register O with the reset
external/status command. The bit is not used in the byte
oriented synchronous modes.

Serial Interface 2.7{27

Read Register 1

D7 (b6 |D51D4 | D3|(D2 | D1 RR1

Do
I
_ All Sent

Residue Codes

Parity Error

Rx Overrun Error

CRC/Framing Error

End of Frame (SDLC)

All Sent (DO)

In asynchronous modes, this bit is set to logic high when alt
the bits of the character have been transmitted onto the
serial link.

In synchronous modes the bit is permanently set to logic
high.

Residue Codes (D1 to D3)

The combination of these three bits indicate the length of the
I-field in the bit oriented modes where the I-field is not an
integral muliipie of the character length.

Parity Error (D4}

When parity is enabled, this bit is set to logic high on
detecting a receive character whose parity does not match
the sense programmed by bit 1 of Write Register 4. The bit
remains set in the error condition until reset by loading the
error reset command into Write Register O.

Rx Overrun Error {D5)

This bit is set to logic high when one or more receive
characters have been overwritten in the receive FIFO buffer.
The bit remains set in the error condition until reset by
loading the error reset command into Write Register 0.

2.7128 Serial Interface

CRC/Framing Error (D6}

The function of this bit is dependent on the mode selected. In
asynchronous modes, the bit is set to logic high on detecting
a receive character with incorrect stop bits (framing error).
The error condition only persists for the particular character
stored in the receive buffer.

In synchronous modes, the bit indicates the result from the
receive CRC error detection circuit. A logic high indicates a
CRC error. The error conditions are reset to the inactive low
state after issuing the error reset command to Write
Register Q.

End of Frame (D7}

In the bit oriented modes, this hit indicates that a valid
closing flag has been detected and the CRC Error and
residue codes are now valid. The bit is reset by issuing an
error reset command to WRO.

Reat Register 2

D7!D6|D5|D4{D3{D2 D1|DO RR2

Interrupt Vector
{channel B only)

Read Register 2 contains the interrupt vector and is read
through channet B only. If the status affect vector bit is set
(D2, Write Register 1), the register indicates the current
interrupt service routine (if any) in operation.

If no interrupts are pending, the vector is set to the condition
for a special receive condition in channel B (see Write
Register 1 description). if the status affect vector bit is not
set {logic low), the register contains a copy of the vector
written into Write Register 2 in channel B.

Serial Interface 2.7/28

&2
D
=
&em
€0
ey
g
o
et
o N
&I
D
L2
o
€L
b
&3
0

The S10 incorporates an elaborate interrupt structure, which
acts in conjunction with the interrupt structure provided

by the Z80 CTC. This is fully described in the chapter
“Interrupt Control”. The following paragraphs merely detail
the interrupt structure of the SI0O.

A single interrupt output line (INT) connects the SIO to
the CPU,

Both channels within the SI0 are able to generate an
interrupt for a variety of conditions. All interrupting sources
can be enabled or disabled (masked) by software, and are
ordered on a priority basis.

All sources within Channel A are assigned a higher priority
than Channel B. Within each channel, the assigned priority is
as detailed below:

1. Special receive condition (Highest).
2. Receive character available.

3. External/status interrupt.

4. Transmit data required (Lowest).

if a SI0 interrupt is in service when a higher priority interrupt
condition occurs, the higher priority condition is granted
service. The S10 stores the lower priority condition and
resumes the interrupt service routine on completion of the
higher priority interrupt routine.

A special receive interrupt is generated when the Sl0 detects
any of the following conditions in the receive data:

1. Parity errors.

2. Receiver overrun.

3. Framing errors {asynchronous modes).
4. End of Frame {(SDLC/HDLC only).

Receive character available interrupts can be programmed to
generate an interrupt on every receive character or for the
first character only (synchronous modes).

2.7/30 Serial interface

An external/status interrupt can be caused by any of the
following conditions:

1. Transitions on the modem control lines; DCD, CTS.

2. A break in receive data (asynchronous modes).

3. An abort sequence in receive data (bit synchronous
modes).

4. Transmit underrun/EOM condition in transmit data
(synchronous modes).

The actual sequence of events performed on the occurrence
of a S10 interrupt condition is as follows.

The SIO compares the new interrupt with any interrupt
currently in service. If the new interrupt is of a higher priority
than the current interrupt, the INT output is set active {logic
low). If the new interrupt is of a lower priority, the interrupt
condition is stored until it becomes the highest priority.

The CPU determines the process generating the interrupt by
performing an interrupt acknowledge cycle which provides
an associated interrupt vector, which specifies the source

of interrupt.

This interrupt vector is constructed from a base address
previously supplied to the S10 (50H) modified according to
the condition generating the interrupt.

The SI0 interrupt thus allows the programmer to select the
appropriate interrupt service routine. On completion of the
SI0 service routine, the CPU has to issue a return from
interrupt command (to WRQ), to enable any lesser priority
pending interrupts to generate an active interrupt output.

The SI0 is able to produce eight different interrupt vectors
according to the type of interrupt as detailed on the previous
pages (4 vectors for each channel). In the case where the
interrupt can be caused by a number of different conditions
(i.e. special receive and external/status), the actual cause
can be detected by reading bits within the appropriate status
register. '

Serial Interface 2.7/31

Transfer of data from the keyboard/mouse is handled by
transmit channel A of the S10. The channel is programmed
to support synchronous communications at a fixed data rate
(approximately 3.85 kbits per second).

The format of the data transmitted from both the keyboard
and mouse is identical, both consisting of a 4 byte
synchronous packet. The first byte in the packet is the sync
byte (5AH). The remaining three contain data. (This is true in
all cases apart from when the Keyboard System Reset button
is pressed. In this case, contiguous sync bytes are
transmitted to the Systems Unit instead. The function of this
is to generate a hardware reset. This mechanism is

discussed in the System Detail chapter).

The clock for the synchronous data is inherent in the data
stream transmitted to the Systems Unit. This is split into
separate Monosync data and clock waveforms by a signal
conditioning circuit.

Reception of the incoming synchronous data consists of two
separate phases. The first phase is the Hunt phase, where
channel A of the SI0 analyses all incoming data, searching
for the sync byte bAH. This is the header byte for all valid
keyboard and mouse transmissions.

Detecting the sync byte automatically switches the SIO into
the second phase, the Receive phase, where the three bytes
of data following the header are loaded into the three-byte
buffer of Channel A.

Every time the SIO tranfers received data into the top
register of the three-byte buffer, it generates an interrupt to
the CPU.

The Systems Unit does not exercise control of data flow over
the IR fink (all transfer of information is one-way only). To
prevent any loss of data, the CPU has to read the incoming
data at a fast enough rate before it is overwritten in the
receive FIFO stack.

2.7]132 Serisl Interface

The software must therefore be capable of processing data
stored in the Channel A S10 receive data buffer at the
maximum possible incoming receive data rate. This
corresponds to the minimum time taken between the end of
one packet and the beginning of the next consecutive four
byte packet from the Keyboard and is of the order of 20 ms.

Encoding the data into a synchronous packet format
provides a high degree of protection to interference from
stray infra-red transmissions generated by other sources. It
prevents the system being unnecessarily interrupted by
other sources, since only transmissions which contain a sync
byte of BAH will be considered to be valid.

Further protection to sources of interference is provided in
the coding of the bytes following the sync header. These
three bytes are encoded using a Hamming format. This is
totally transparent to the S10. The S10 is only concerned
with receiving bytes of data and is not concerned with the
make-up of the bytes. All “de-hamming” is carried out by
the BIOS.

A description of the format, character codes and their
significance, supplied from the Keyboard is detailed in the
Keyboard chapter. Details of the Mouse and its transmission
format is packaged into a separate manual.

Serial Interface 2.7/33

Sound Generation

Sound can be generated by one of fwo methods.

The first method can be used to produce audio tones and
simple noises.

The second method can be used to produce much more
complex waveforms and synthesised sounds.

The first method requires programming channel A of the SIQO
to repeatedly transmit a sync byte to the audio amplifier. This
is the sync header byte of a normal monosync transmission.
The regularity of the bit pattern within the 8-bit sync byte
controls the purity of the output tone. The frequency of the
output is controlled by timer pulses generated by Channel 2
of the CTC. These pulses act as the baud rate control for the
synchronous transmission.

The second method requires programming channei A of the
S10 to transmit a series of data bytes, as in a standard
monosync transmission. Complex sounds can be produced
by varying the data sent to the SIO in combination with
varying the frequency of the output via control of the CTC.

The two methods require slightly different programming
sequences. These are described in the chapter headed
“Sound Generation”.

2.7/34 Serial Interface

i
(o
-
e
£33

Channel A provides a series of Write Registers to configure
the SI0 to interface with the keyboard and mouse, and also
to generate sound.

Copy Registers

As the write registers are write-only and cannot be read, the
BIOS always keeps a copy of certain SIO registers which
may be of use to programmers. These are the registers
WR1, WR3, WR4 and WRb5 in channel B.

The register copies are located in RAM in a register copy
table along with copies of other write only registers used in
the system. The reason for keeping copies is to avoid the
possibility of adverse effects arising when the BIOS and the
application programmer both update bits within the register.
Since either source could unknowingly modify other bits
within a particular register which are vital for the other’s
operation, a programming structure has been devised to
minimise this problem.

The BIOS updates the write register by performing the
fotlowing sequence:

1. Reads in the data byte stored in the copy register.

2. Modifies the bits within the byte as appropriate, [eaving
alt other bits untouched,.

3. Writes the modified byte to the Write Register.

4. Updates the copy register.

To avoid unintentionally overwriting bits set by BIOS, the
same approach shiould also be adopted by the application
programmer when directly accessing the hardware.

A copy of a particular register is located by:

1. Reading a double word pointer located at absolute
address location 722H (the start of the register copy
table).

2. Adding an offset to the pointer to form the address of
the register copy byte of interest.

Serial Interface 2.7/358

The offset for the Channel A copy registers are as follows:

Write Register 1 04H
Write Register 3 0bH
Write Register 4 0GH
Write Register 5 07H

Initialisation

The parameters issued to the Write Registers of channel A
for interfacing the S!O to the Keyboard are programmed
during an initialisation routine by the BiOS.

Once channel A is initialised with the keyboard parameters
and channel B is programmed with the correct base vector
and the Status affects vector bit is set {Channel B - Write
Register 1 bit D2), transfer of data between the Keyboard
and the CPU can proceed via the synchronous hunt/receive
mechanism.

The format of the command bytes supplied to the Write
Registers of channel A during initialisation are detailed in the

following pages. The address locations utilised by channel A

are described in a previous section, under the heading

“Processor Interface”.

Write Register 4

D7 DO
0100|0100 | x| x

L I |1]

Enable sync mode

Monosync

x1 clock rate
x == not applicable to mode and application, program to O.

2.71/36 Serial Interface

Write Register 7

D7 DO
0! 110111110170

[|

Receiver
Sync byte (BAH)

Write Register 3
D7 DO
11110110} x}|1

1
1]
_ Rx Enable

Sync Char Load Inhibit

Rx CRC disabled

Hunt mode

Auto Enables off

8 bits/Rx character
Write Register 1
D7 DO
x!1x|x} 11T x| 0|0
L

L Ext. Interrupt masked”

Tx Interrupt disabled

Rx Interrupts enabled

* unmasked to allow the RS232C line DCD to generate an
interrupt

Generating Sound

Once the channel has been initialised with the necessary
parameters to receive data from the keyboard, it can then be
programmed for generating sound. The registers used for
programming the SIO to generate sound are detailed in the
Sound Generation chapter.

Serial Interface 2.7/37

afions

General

The interface to the RS232C serial link is implemented by
channel B of the S10, which can be programmed to operate
in either asynchronous or synchronous communications
modes with transmit and receive baud rates determined
either via the Z80 CTC, or via the external data
communications equipment,

The clock inputs to the S0 pins TxCB and RxCB, are used to
determine the transmit and receive baud rates for the
RS232C link. Spiit rate clocks cannot be set up by the
internal timer. The same rate is used for both transmit and
receive,

Details of the timer and the appropriate programming values
to produce the majority of the commonly used baud rates
are detailed in the “Timer” chapter. These values apply to
asynchronous communications only and require channel B
to be programmed in the x 16 clock rate mode to achieve the
correct baud rate.

The selected transmit rate clock (TxCA) is also supplied to
the RS232C connector (connector pin, TxClk), for use by the
external data communications equipment.

Four of the most commonly used RS232C modem control
lines are connected to various inputs and outputs of channel
B of the SI0, available for coordinating data transfers over
the serial link. These include the outputs RTS and DTR, and
the inputs DSR and CTS. The modem controlinput DCD

is accessible through channel A, Use of each individual
modem control line is dependent on compatible facilities
within the external equipment.

Generation of the output modem control lines and status
monitoring of the input modem control lines is directly under
program control. The SI0 can be programmed to generate
an interrupt to the CPU every time a transition occurs on any
of the input control lines.

2.7/38 Sarialinterface

RS232C Connector Detail

The definition of the available RS232C connections provided
by the 25-way D-type connector are detailed in the following
table. The R$232C voltage levels are defined below. The line
idle condition is indicated by continuous marking.

1. Line marking; Between —3V and — 15V relative to QV.
2. Line spacing; Between +3V and + 15V relative to OV.

RS232C Connector Pin Definition

Pin Description Pin Description
1 Frame Ground 9t0 14 N.C.
2 TxData 15 Tc {input)
3 RxData 16, 18,19 N.C
4 RTS 17 Rc (input}
5 CTS 20 DTR
6 DSR 21t023 N.C.
7 OV {Signal GND) 24 TxClk {output)
8 DCD 25 N.C.

25PIN D-TYPE FEMALE
13

\ /

\ f
O C00O000CO0ODDOOO
000000000000

/ \

25

Figure 2. RS232C Connector Detail.

Serial Interface 2.7[/38

The following paragraphs detail the format of the Write
Registers for setting channel B fo operate in the
asynchronous mode and also the various options available
for controlling the transfer of data over the serial link. For
details of programming the channel for the various
synchronous communication modes, reference shouid be
made to the appropriate Zilog documentation.

One other parameter is programmed through channel B.
This is the base address for the SIQ interrupt vector.

The address locations utilised by channel B and the method
for writing data to the Write Registers are described in a
previous section under the heading “Processor interface”.

Copy Registers

As with channel A, the BIOS also keeps a copy of certain SIO
registers within channel B which may be of use to programmers.
These are the registers WR1, WR3, WR4 and WRb.

The reason for keeping copies is to prevent contention
arising between the BIQOS and an application programmer
when updating write-only registers. The mechanism for
writing to the SIO registers (as described in the Keyboard
copy registers) should also be adopted for channel B.

The offset from the double-word pointer for the channel B
copy registers are as follows:

Write Register 1 OCH
Write Register 3 0O1H
Write Register 4 02H
Write Register 5 0O3H

2.7140 Serial Interface

Setting the Base Vector

This is normally set up by the BIOS during an initialisation
routine. The routine initialises the base vector to 50H by
writing this value to channel B Write register 2.

The status affect vector bit in Write Register 1 of channel B
(D2} also has to be set to enable an interrupt condition to
modify the base vector.

Write Register 2

D7 DO
cl1|o|i1|l0oj0l0]0

| I

Vector base address

Asynchronous Communications

To receive and transmit data in the asynchronous mode, the
following conditions have to be determined:

1. The transmit and receive baud rates.

2. The character length.

3. The number of stop bits in the transmit character (1
stop bit is always expected in the receive data).

4. The sense of the parity, if any.

5. The interrupt mode.

6. The line protocol.

Note: The modem control line DCD from the RS232C
interface is connected {o DCDA of channel A.

Serial Interface 2.7]47F

Write Register 4

This register determines; the number of stop bits in the
transmit data, the sense of the parity (if any) in the transmit
data and the expected parity in the receive data, and the
multiplier applied to both the transmit and receive input
clock rates prior to setting the baud rates.

D7 DO
01| x|x|D3D2|D1{DO

||

Parity Odd

QO Parity Off
1
1 Parity Even

1 1 stop bit
QO 1.5 stop bits
1

0
1
1 2 stop bits

x 16 clock rate

2.7]42 Serial Interface

Write Register 5

This register determines the transmit character iength,
controls the modem outputs RTS and DTR, allows the
programmer to enable/disable transmission, and also
generate a break in transmission.

D7 DO
D7|D6|D5|D4[D3| x |D1| x

0 RTS marking
1 RTS spacing

0 Txdisabled {output marking)
1 Txenabled for data or break

O Send break inhibited
1 Send break enabled-Tx output spacing

O O b bits per character
1 O 6 bits per character
O 1 7 bits per character
1 1 8 bits per character

0O DTR marking
1 DTR spacing

Serial Intarface 2.7[43

Write Register 3

This register determines the number of receive bits
assembled to form a character, allows the programmer to
enable/disable reception and also selects whether the
modem control lines CTS and DSR control data transmission
and reception over the serial link (Auto Enable}.

D7 [B]9)

D7D6D5§x x| x| x DO

0O Rx disabled
1 Rx enabled

0 Autoenable off
1 Autoenable on

0 O b bits per character
1 O 6 bits per character
0 1 7 bits per character
1 1 8bits per character

Write Register 1

This register enables/disables the transmit, receive and
external/status interrupts.

D7 DO
x| x{x|D4(D3| 1 |D1}DO

O Ext. Interrupt masked
1 Ext. Interrupt enabled

QO Tx Interrupt masked
1 TxInterrupt enabled
| Status Affects Vector

0 O RxInterrupts masked

1 O Interrupt on all Rx characters,
parity affects vector,

1 1 Interrupt on all Rx characters,
parity does not affect vector.

2.7/44 Serial Interface

The two StO communication channels are designated channel
A {used for the keyboard/mouse link and sound) and

channel B (used for the RS232C link}. On the block diagram
at the beginning of the chapter, connections to channel A are
denoted by the suffix A (e.g. TxDA), and to channel B by the
suffix B (e.g. RxDB). All the remaining inputs and outputs of
the S10 are connections to the processors. A description of
each pin is detailed on the following pages.

System Connections

DO to D7 Data bus, used to transfer data and commands
between the processors and the SIO.

IORQ input/Output Request. Control input, active state
logic low, derived by combining the read and write
commands from the system control bus (AIOWR
and IORC) using a series of logic gates. Used in_
conjunction with RD and the address inputs B/A,
C/D and CE to control the transfer of data and
commands between the S[0O and the CPU. An
active state on I0ORQ indicates a transfer
operation on the data bus; RD signifies the
direction of data transfer (see below).

IORQ also has another function. When set active
at the same time as M1 is set active, it acts as an
acknowledgement of a SIO interrupt, causing the
SI0 to release an interrupt vector onto the

data bus.

M1 Machine Cycle 1. Control input, active state logic
low. Function as described above.

Sarial Interface 2.7]45

RD Read. Control mput Used in conjunction with
IORQ and the address inputs B/A, C/D and CE to
control the transfer of data and commands
between the SIO and processing elements. If both
IORQ and RD are set low and a valid address is set
up, the direction of data/command transfer is
from_the SIO (read operation). If IORQ is set low
and RD is set high, with avalid address set up, the
direction of data/command transfer is to the SIQ
(write operation).

CE Chip Enable. Address input, active state logic low.
When active, indicates that the S10 is selected for
a data/command transfer operation.

B/A Channel B/Channel A select. Address input. A
logic low on B/A with CE also set low indicates
that the data/command transfer operation
involves channel A, A logic high on B/A with CE
set low indicates that the data/command transfer
operation involves channel B.

C/D Control/Data select. Address input. A logic low on
C/D with CE also set low indicates that the
information on the data bus is interpreted as data.
A logic high on C/D with CE set low indicates that
the information on the data bus is interpreted as
commands.

CLK System clock input. 2.33 MHz clock with a 50%
duty cycle for internal timing within the SIO.

RESET System reset. Input, active low. When active,
disables the receive and transmit sections of both
channels and sets the transmit lines to the marking
condition, requiring the registers within the 810 to
be re-initialized before performing data transfer
operations.

INT Interrupt request. Output, active low. Set active
when an interrupt condition is detected internally
within the SIO.

2.7146 Serial Interface

Channel A Connections

RxDA Receive Data. Serial data input for data from the
Keyboard and mouse. Decoded infra-red signals
supplied via the IR Receiver Board.

TxDA Transmit Data. Serial data output to the sound
generator amplifier.

RxCA Receiver Clock for channel A. Sets the receive rate
of the internal receiver circuitry. Derived from the
incoming IR data stream supplied from the IR
Receiver Board.

T™XCA Transmitter Clock for channel A. Sets the transmit
rate and thus controls the sound output frequency
for the sound generator circuit.

SYNCA Synchronisation. Control output used to generate
a hardware system reset. Everytime the SIO
receives a sync character, the SI0 pulses this pin
low. When the Keyboard reset key is pressed, the
keyboard transmits a contiguous stream of sync
characters which results in pulses being produced
in a regular 50% duty cycle. This causes a
capacitor to gradually discharge. If the key is held
down for approximately one second, the capacitor
is discharged sufficiently to change the state of
a trigger circuit which causes a system reset.

This mechanism is discussed more fully in the
System Detail chapter.

DCDA Data Carrier Detect A. Control input from the
RS232C interface via a line receiver, connected to
the Data Carrier Detect line — DCD. When used
with a modem, the active state on DCD indicates
that the modem has detected data sent to it. The
input sets a control bit within an internal register
according o the state of DCDA and also has the
facility to generate an interrupt request to the CPU
on every DCD transition.

RTSA Reguesttosend. Used, in conjunction with DTRA,
as a general purpose oufput to select the volume
level for the audio amplifier {as described in the
Sound Generation chapter). The logic state on
RTSA is controlled by software, following the state
of an associated control bit within an internal
register.

Serial Interface 2.7/47

DTRA Data terminal ready. Used, in conjunction with
RTSA, as a general purpose output to select the
volume level for the audio amplifier (as described
in the Sound Generation chapter). The logic state
on DTRA is controlied by software, following the
state of an associated control bit within an internal
register.

CTSA Clear to send. Control input, connected to the
Busy control line from the Parallel Printer Port.
This is normally programmed as a general purpose
input, to generate an interrupt whenever a logic
transition occurs on the printer Busy line.

2.7[48 Serial inferface

Channel B Connections

TxDB Transmit Data. Serial data output to the RS232C
interface via a line driver. A mark is indicated by
logic high on TxDB and a space, by logic tow.

RxDB Receive Data. Serial data input from the RS232C
interface via a line receiver. A mark is indicated by
a logic high and a space, by logic low.

TXCB Transmitter Clock. Input used to determine the
transmit baud rate of the R§232C channel. When
operating in asynchronous mode, a facility exists
within the StO to divide the input clock frequency
internally, prior to being used to set the baud rate.
The divider is controlled by software and allows
serial data to be transmitted at a rate of 1, 1/16th,
1/32nd or 1/64th of the rate supplied to TxCB. In
synchronous modes, this facility is not available, so
that TxCB corresponds directly to the transmit
baud rate.

RxCB Receiver Clock. Input used to set the receive baud
rate of the internal data receiver circuitry. In
asynchronous modes, the receiver clock is divided
by the same divisor programmed for the
transmitter clock. In synchronous modes, RxCB
directly sets the receive baud rate of the data
receiver circuitry.

DCDB Data Carrier Detect B. Control input from the
RS232C interface via a line receiver, connected to
the Data Set Ready line — DSR. When used with a
modem, the active state on DSR indicates that the
modem has data to send. The input can be
programmed to operate in one of two modes. The
first mode allows DSR to act as the enable control
line to the receive section of channel B. The
second mode sets a control bit within an internal
register according to the state of DSR and also has
the facility to generate an interrupt request to the
CPU, every DSR transition.

Seria/ Interface 2.7/49

DTRB Data Terminal Ready. DTR control output to the
RS232C interface via a line driver. When used
with a modem, the active state (logic low)
indicates that the S10 is ready to start handling
data. DTRB is controlled by software, following
the logic state of an associated control bit within
an internal register.

RTSB Request to send. RTS control output to the
RS232C interface via a line driver. When used
with a modem, the active state (logic low)
indicates that the S1O has data ready to send.
RTSB is controlled by software, following the logic
state of an associated control bit within an internai
register.

CTSB Cleartosend. CTS control input from the RS232C
interface via a line receiver, When used with a
modem, the active state (logic low) indicates that
the modem is ready to receive data. CTSB can be
programmed to operate in one of two modes. The
first mode allows CTSB to act as the enable
control line to the transmit section of channel B.
The second mode sets an associated control bit
within an internal register according to the state of
CTSB and also has the facility to generate an
interrupt request to the CPU, every time a
transition occurs on CTSB.

2.7/50 Serial Interface

Contents
Introduction

Details
General
Data Transfers
Connector Detail
Address Allocation

Programming Considerations
Data Port
Printer Status
Data Strobe

Hiustrations

1. Printer Interface
2. Centronics Connector Detail

Printer Interface 2.8/7

Introduction

The Parallel Printer Port is designed to drive printers and
plotters with a Centronics parallel interface.

The Printer Port has a 36-way, male connector, located on
the System Board flush with the rear panel of the Systems

Unit. The block diagram in Figure 1 shows the main circuit
components.

The connector is wired for eight data output lines, and two
of the handshake signals that are supplied on the majority of
Centronics compatible printers; Data Strobe, and Busy.

2.8/2 Printer Interface

Details

General

The Printer Interface consists of:

1. An 8-bit latch, for the transfer of data bytes to the
printer.

2. A control line for strobing data bytes into the printer
{Data Strobe).

3. A printer status line {Busy/Not Busy) from the printer.
This is wired to the Serial Input/Cutput (Z80 SI0O)
controller on the System Board.

The Busy signal {active state - logic high) as supplied from
the printer is used as a multi-purpose status signal. Its’
fundamental role is to indicate that the printer is unable to
receive data. The F1 views the cause of no consequence, as
no operator feedback is provided via the computer. it may be
because the printer buffer is full, the printer has run out of
paper, or any other error/fault status condition.

The Busy signal is wired to one of the input control lines of
the Z80 SIO (CTSA). This would normally be used as a
Modem control input. Any transition on the Busy line,
whether from high to low (Not Busy), or low to high (Busy),
causes the S10 to generate an interrupt to the CPU and '
produce an interrupt vector. The associated service routine
then can check the current state of the Busy line by reading a
status register in the S10 {(Read Register O).

Printer Interface 2.8/3

[
BIT §
MAPPED >
CONTROL 3
PORT o
i
i
w g
N 2
DATA BUS 8-BIT G
-/ LATCH 4
=
o
o
W
SELECT semm——3 8
DECODER = EN g
- o
|OWR ————t =
11}
Q

Z80 810 l
CTSA

Figure 1. Parallel printer interface.

Data Transfers

The normal sequence of operations for the transfer of data is
as follows.

The BIOS writes a byte of data to the data latch, and then
reads the status register (Read Register 0} in the SI1O
Channet A to check on the status of the printer.

If the printer status is Busy, then the print routine waits for a
Busy to Not Busy transition. The transition causes the SIO to
generate an interrupt vector to the CPU.

When the printer status is set to Not Busy, the print routine
sends a Data Strobe signal (low-to-high transition) to the
printer interface. This latches the data byte stored at the
outputs of the latch into the printer.

The process is then repeated for each data byte.

2.8/4 Printer Interface

Connector detail

Pin Description

Pin Description

1 Datastrobe 19
2 DO 20
3 D1 21
4 D2 22
5 D3 23
6 D4 24
7 Db 25
8 D6 206
g D7 27
10 N.C. 28
11 Busy 29
12 N.C. 30
13 N.C. 31
14 Link selection* 32
15 N.C. 33
16 0OV 34
17 Ground 35
18 Link Selection ** 36

ov

oV

ov

ov

ov

oV

oV

oV

ov

03]

oV

ov

N.C.

N.C.

N.C.

+ 12V out via 10 ohm resistor
Link selection #*
N.C.

* Normally open circuit, OV with link fitted
** Normally open circuit, + 5V with link fitted

18

1

N A QU ARG RS OEE NI R RN NS IR S NI RN QIR PANERE NS |

MMM MmMIn MM MmITI M

36

19

Figure 2. Centronics Connector pin detail

Printer Interface 2.8/5

The definition of the control outputs to and from the printer
connector is detailed below.

DOto D7 8-bit data output

Data Strobe Output timing signal. Used to latch the data
into the printer. Normally at logic high. Positive
edge of logic low pulse indicates printer data is

valid.

Busy Input signal. Logic high state indicates that the

printer is unable to receive any data.

Address allocation

The system software views the printer interface as an array
of ports in the System |/0O Space.

The port addresses are defined by the ¢chip select and other
System Address Bus connections to the data output latch,
the control port latch and the S10.

Address Port Data Access

O0H Printer 8-bit print code Write only

OFH Data Strobe FFH to set low Write only
OCH to set high

22H Busy SI0 Read Register 0 Read only
(Bit Db)

22H interrupt SIO Write Register 1 Write only

enable (Bit DO)

2.8/6 Printer interface

T
€59

Frogramming Consideratios

gt

Data Port

The printer data port is located at address OOH in the system
I/O space. Writing data to this address latches the data
through to the Centronic port outputs.

Printer Status

The Busy status line of the printer is wired to the CTSA input
of the Z80 S10. The programmer is able to directly monitor
the state on this line by reading bit D5 in Read Register O of
the S10 {Channel A). This bit indicates the inverse of the
state on the CTSA input, i.e.

Bit D5 high = Not Busy
Bit Db low = Busy

The SI0 can also be programmed to generate an interrupt
and supply an interrupt vector to the CPU on any signal
transition on the control inout {Busy to Not Busy and Not
Busy to Busy). This is normally set up by the BIOS.

The associated interrupt service routine is identified by the
vector DAH. Enabling the interrupt is achieved by setting bit
DO in Channel A Write Register 1 of the S0 high. The
interrupt vector BAH does not uniquely identify the cause of
the interrupt, which may be caused by other external
line/staus events than transitions on the Busy line (e.g.
transitions on the DCD input from the RS232C interface).

Full details for programming the Z80 SIO are provided in the
chapter headed “Serial interface”.

Data Strobe

The Data Strobe line is controiled by writing to a bit-wide
port mapped in the system |/O space at odd address location
OFH. The port is wired to the LSB data line D8 on the high
order section of the data bus. Writing FFH to the port sets
the Data Strobe line low. Writing OOH to the port sets the
Data Strobe line high.

Printer Interface 2.8/7

Contents

Introduction
Details

General

Channel modes
Clock rates
Interrupts
Channel usage
Address allocation

Programming Considerations

Initialisation

Setting the base interrupt vector
Channel Q: Expansion interrupts
Channel 1; RS232C baud rate
Channel 2: Sound frequency
Channel 3: System clock

Return from Interrupt Sequence

lllustrations

1. Counter/Timer

Timer 2.89/7

Introcuction

The System Clock interrupt is generated on a regular cycle
of 20 ms by the Z80 Counter/Timer Circuit {CTC). This
integrated circuit is located on the System Board.

The Z80 CTC is a multi-purpose timing device, with four
programmable counter/timer channels and a prioritised
interrupt structure. The channels are numbered from
Channel O to Channel 3, and are used to generate the
following functions:

Channel Usage

O Expansion Bus interrupts.

(Transmit and receive baud rate clocks for the
RS232C communications interface.

2 The fundamental frequency for

generating sound.
3 The System Clock interrupt.

Channel O is programmed to respond to interrupt requests
from the Expansion Bus. Channels 1 and 2 can be
programmed to produce timing signals which are used by
the Serial Input/Output {S10) controller for R§232C
communications and sound generation, respectively.
Channel 3 is used by the BIOS for the system clock.

2.9/2 Timer

1E: fo

CHANNEL 2 frl 22

CHAMNNEL 1l o1

l INT

HANNEL 3

2.33MH:z m———_b cK
CK2
153.8BkHz
K1
EXPANSION BUS CK/TRGO
INTERRUPTS
[INT 2, INT 3)
b
DATA BUS h:
¥
» |FD
CONTROLBUS M TORD
Y 1w
CTC SELECT (CSB)}———pd CE
A2 — B4 CsI
Al ——ppf 50

CHANNEL O
—lmﬁ

vV v

IED

T GKA

™ CKB

Rx CKB

280530

280 CTC

Figure 1. Counter/timer

8086 INTR

Timer 2.9/3

)
gzt
£3d

%Al;-‘;:mmn

General

The CTC is organised internally as four, independent
counter/timer channels, each with:

1. A clock/trigger input.

2. A zero count/timeout output.

3. A Control Register {Write only).

4. A Time Constant Register {(Write only).
5. A Downcounter Register {Read only).
6. An interrupt generator.

There is also a clock input for the CTC as a whole which is
used for internal timing within the CTC and can also be used
as a clock source for decrementing the downcounter registers.

Channel modes

Each channel operates independently in one of two modes:
counter mode, or timer mode.

in counter mode, the value in the Downcounter Register is
decremented each time a pulse is detected on the
clock/trigger input,

in timer mode, the value in the Downcounter Register is
decremented regularly at each CTC clock input (2.33 Mhz).

in either mode, when the value in the Downcounter Register
has been decremented to zero, the CTC generates a pulse on
the zero count/timeout output for that channel. The
Downcounter is then reloaded from the Time Constant
RHegister, and the count down is repeated.

Each channel can also bhe programmed to generate an
interrupt to the CPU via the CTC’s interrupt output, on
reaching zero count state. The CTC can also produce an
interrupt vector to specify the cause of the interrupt.

Each channel is programmed independently, by writing a
command byte to the Channel Control Register and then
loading an integer value into the Time Constant Register.

2.9/4 Timer

In counter mode, as soon as the Time Constant Register has
been loaded, it's contents are transferred to the
Downcounter Register, and the downcounter is
decremented everytime a clock pulse appears on the
clock/trigger input for the channel.

In fimer mode, the count down cycle is programmed to begin
either as soon as the Time Constant is loaded, or when the
first pulse is detected on the clock/trigger input.

The count down and reload sequence is repeated
continuously until a reset command is written to the channel
Control Register.

Clock rates

In counter mode, the clock pulse for decrementing the count
is taken from the clock/trigger input for the channel.

A channel can be set to decrement after either the rising or
the falling edge of the clock/trigger puise, but the decrement
itself is synchronised with the next rising edge of the CTC
timer clock.

In timer mode, the clock pulse for decrementing the count is
taken from the CTC’s clock input, which runs at 2.33 MHz.
This clock rate is prescaled within the channel, to divide the
output clock frequency either by 16 or 2586.

Interrupts

The CTC is connected in a daisy chain interrupt
configuration, with the Z80 S10 on the Systern Board. The
interrupt output lines of both devices are wired to the single
interrupt input {INTR) of 8086 CPU. The Z80 SI0 has higher
priority interrupt structure than the CTC. This is set by the
hardwired connection 1EQ (Z80 SI10) to IEI {ZBO CTC).

If an interrupt condition occurs within the CTC, it can only
initiate the associated service routine providing there are no
Z80 SIO interrupts queued and no Z80 SIO service routines
in progress. These two states are indicated by the SIO setting
it's |[EO output low.

Timer 2.8/5

When an interrupt condition occurs within the CTC and the
IEl input is set high, the CTC generates an interrupt request
to the CPU. The CPU then performs an interrupt
acknowledge cycle, which releases a modified
pre-programmed interrupt vector onto the data bus to
indicate the cause of the interrupt. This is then used by the
CPU to vector to the appropriate service routine.

At the end of the interrupt cycle, the programmer has to
send a two-byte RET! (RETurn from Interrupt) command to
terminate the interrupt cycle and allow any lower priority
interrupts to be serviced.

Within the CTC, the channels also have an interrupt priority.
Channel O has the highest priority, followed by Channel 1
and then Channel 2, with Channel 3 having the lowest
priority. Interrupt requests from a lower priority channel are
gueued until those at a higher priority have been cleared.

This method of prioritising interrupts is described in detail in
the chapter headed interrupt Control.

in either counter or timer mode, if interrupts are enabled on
a particular channel, then an interrupt reguest is generated
internally when the downcount reaches zero.

The pre-programmed interrupt vector is a base address for
the interrupt vectors capable of being produced by the four
CTC channels. When an interrupt is generated on one of the
four channels, the base vector is modified by adding O, 2, 4
or 6 to its value, according to whether the interrupt
condition occured on Channel 0, 1, 2 or 3. This modified
vector is accessed by the CPU during the interrupt
acknowledge sequence.

The base address is 60H and is loaded by the BIOS, by
writing this value to the Channel O Control Register.

2.9/6 Timer

Channel usage

Channel O is programmed by the BIOS to operate in counter
mode, and is used to vector interrupt requests caused by
interrupts occuring on the kExpansion Bus (controllines INT2
and INT3).

These two control lines normally produce a level-sensitive
interrupt and are connected to the inputs of a NAND gate to
form a single interrupt line to the trigger input of channel O
(CK/TRGO). This line is also gated with a clock signal, prior
to being supplied to the CTC, to enable the CTC to be
triggered by the “later” Expansion Bus interrupt when both
control lines become active.

When an Expansion bus interrupt occurs, the clock signal
causes a positive edge to be produced on the Channel O
clock/trigger input. This causes the Downcounter to be
decremented from 1 to O (the value of 1 is the pre-programmed
Time Constant, set by the BIOS), and the Downcounter to be
reloaded from the Time Constant register.

On reaching zero, an internal interrupt is generated which
modifies the base interrupt vector to 60H and an active
interrupt request is supplied to the CPU (providing no higher
priority interrupts are currently in service). The modified
interrupt vector is accessed by the CPU, during it's interrupt
acknowledge cycle.

Further positive edges produced on this clock/trigger input
are ignored until a RET| sequence is sent to the CTC, to
terminate the Expansion Bus interrupt sequence.

Further details on how to use Expansion Bus interrupts are
provided in the Expansion chapter.

Channels 1 and 2 can be programmed to operate in either
counter or timer mode, to provide clock inputs to the Z80
S10 for the RS232 interface and for generating sound. In
some cases the timer mode clock (2.33 MHz), used with a
period prescaler of x 16 or x 256, can generate a more
accurate rate; in other cases, it is more convenient to use the
counter mode clock/trigger inputs (153.8 KHz).

Timer 2.9]7

Channel 1 can be used to set the baud rate for both the
Transmit and Receive clocks on the RS$232C channel of
the S10.

Channel 2 generates a clock which sets the fundamental
frequency of the pulses sent by the SIO to the audio output
for sound generation.

Channel 3 operates in timer mode, and is programmed by
the BIOS to generate a System Clock interrupt every 20 ms.
Its clock/trigger input is wired to a display timing signal but is
not currently used.

Address allocation

The system software views the Channel Control Register, the
Time Constant Register, and the Downcounter of each channel
as an array of ports in the System Input/QOutput Space.

The port addresses are defined by the chip select and other
System Address Bus connections to the CTC, as follows:

Address Channel Register Access
10H 0 Control/Time Constant Write only
10H 0 Downcounter Read only
12H 1 Control/Time Constant Write only
12H 1 Downcounter Read only
14H 2 Control/Time Constant Write oniy
14H 2 Downcounter Read only
16H 3 Control/Time Constant Write only
16H 3 Downcounter Read only

2.9/8 Timer

Programming Considerations

Initialisation

Each channel is initialised separately, by writing a command
byte to its Control Register, followed by an integer value byte
for its Time Constant Register. Both bytes have to be written
in sequence to the same 1/0 address. The command byte is
sent first, followed by the time constant byte, if required (bit
2 within the command byte is used to signify to the CTC
whether the following byte is the time constant byte or not).

The command byte sets the channel mode and related
options, enables or disables interrupts, and sets the count to
occur on the rising or the falling edge of the input.

The Time Constant Register holds the value to be loaded into
the Downcounter at the start of each count cycle. It can be
overwritten during a count without affecting the current -
contents of the Downcounter. The new value is then loaded
into the Downcounter at the next zero count.

The current Downcounter value can be read at any time
without disturbing the count.

In counter mode, counting is initiated by the first clock pulse
after the Time Constant Register has been loaded.

In timer mode, counting can be set to begin either when the
Time Constant Register is loaded, or to be triggered by the
next clock/trigger input. No action is taken on a
clock/trigger input until the next rising edge of the CTC’s
2.33 MHz clock input.

Counting continues uninterrupted until a reset command is
written to the Control Register for the channel. After a reset,
the Control and Time Constant Registers must be
re-initialised.

Prior to using interrupts, the base address of the interrupt
vector accessed by the CPU during an interrupt
acknowledge sequence must be written to the CTC. This is
achieved by writing a special command byte to Channel O of
the CTC. This is the first byte normally written to the CTC
during initialisation.

Timer 2.9/9

Setting the hase interrupt vector

The BIOS sets the base address for interrupt vectors from
the CTC, by writing the value (60H) to the Control Register
port of Channel O. The general format of the command byte
to set the base address is as follows:

07

Do

v

v iviviv]| x| xi]0

L Setlow to indicate that
the byte is the vector
byte and not the channel
control word

MSB Vector bits

X = immaterial, program to zero.

Channel 0: Expansion Bus interrupts

Channel O is initialised by the BIOS to generate an interrupt
vector on receiving an active interrupt request from the
Expansion Bus.

This is achieved by writing two bytes in sequence to /0
address 10H. The first byte is the command to configure the
channel. The second byte is the Time Constant value.

The format of the command byte is as follows:

D7

Do

1

Tyx | 1|1t 111

1

Set

L Set high to indicate byte
‘ is a command byte

Set high for software reset

Set high to indicate
Time Constant follows

Set high for clock/trigger input
starts count

high for clock/trigger on

rising edge
Set high for counter mode
Set high to enable interrupts

This command byte is written to the Channel O Control
Register, to set the channel into counter mode with
interrupts enabled.

2.8/10 Timer

The Time Constant value written to 1/0 address 10H by the
BIOS is O1H.

The channel is thus set to count down from 1 to O and then
generate an interrupt on receiving a positive edge on it’s
clock/trigger input.

Channel 1: R$232C baud rate

Channel 1 is initialised to generate the Transmit and Receive
clock inputs for the RS232C interface formed by the Z80
S10. These clocks have to be switched off if the SI0 is to take
its clocks from the external device connected to the RS232C
interface. This is achieved by writing a reset command to
Channel 1 with the “Time Constant follows” bit set (bit 2)
and not sending the Time Constant byte (see below).

Channel 1 produces a pulse train for the Transmit and
Receive clocks for the RS232C serial interface. It can be
programmed to operate in either counter or timer mode, to
provide clock inputs to the SIO at the required rate.

In some cases, the timer mode clock (2.33 MHz), used with
a period prescaler of x 16, can generate a clock rate that is
closer to the desired frequency; in other cases, it is more

convenient to use the counter mode clock/trigger inputs
{153.8 KHz).

In all cases, interrupts are disabled on this channel.

Timer 2.9/17

The format of the command byte for the timer mode is
as follows:

D7 Do
01001101111

L Set high for
' command byte.
Channel Reset.

Set high for Time Constant
to follow.

Set low to start count when
Time Constant is loaded.

Set high for clock/trigger on
rising edge.

Clock interval prescaler: set low for x16.
Set low for timer mode.
Set low to disable interrupts.

The format of the command byte for the counter mode is
as follows:

D7 DO

O 1 ix !t 1< 1111

L Set high for
i command byte.
Channel Reset.
Set high for Time Constant
to follow.
Set high for clock/trigger
on rising edge.
Set high for counter mode.
Set low to disable interrupts.

The command byte is written to the Channel 1 Control
Register. This then followed by an integer value, which is

written to the Time Constant Register to set the output
clock rate.

2.9/12 Timer

Listed below are the count values for programming Channel
1 to generate some of the commonly used baud rates. These
are the values used for asynchronous communications when
the Z80 SIO is programmed to internally divide the incoming
baud rate clock inputs by 16.

Equivalent Countvalue Channel mode
Baud Rate {Hex)
50 CO Counter
75 80 Counter
110 h3 Timer
1345 44 Timer
150 40 Counter
300 20 Counter
600 10 Counter
1200 08 Counter
1800 05 Timer
2400 Q4 Counter
4800 02 Counter
9600 01 Counter

The formulae for calculating the required clock rate in each
of the two CTC channel modes are given below.

In counter mode, using the 153.8 KHz clock, the baud rate
(in bauds) is given by the following formula:

153800/(16 x Time Constant value) =
9613/Time Constant

Note: The divider factor of 16 is provided by the Z80 SIO
when operating in asychronous mode (not the CTC}).

In timer mode, using the 2.333 MHz clock with a x 16 clock
period prescaler set in the CTC channel, the baud rate (in
bauds) is:

2333333/{16 x 18 x Time Constant) =
9114.6/Time Constant

Note: One of the divider factors of 16 is provided by the
pre-scaler; the second is provided by the Z80 S10 when
operating in asychronous mode.

Timer 2.9]/73

Channel 2: Sound frequency

Channel 2 is used to generate the clock for the fundamental
frequency at which bit pulses are transmitted by the SIO to
the audio output circuitry for sound generation.

Channel 2 can be programmed to operate in either counter
or timer mode, to provide clock inputs to the S10 at a
particular rate. in practice, this fundamental frequency is
limited by the frequency range of the loudspeaker which is
from 600 Hz to 3 kHz.

The format of the command byte for the timer mode is
as follows:
D7 DO

10 (O [1T[O1 1T} 1]1

L Sethigh for
l command byte.
Channel Reset,

Set high for Time Constant
to follow.

Set low to start count when
Time Constant is loaded.

Set high for clock/trigger on
rising edge.

Clock interval prescaler: set low for x16
sethighforx256

Set low for timer mode.
Set low to disable interrupts.

2.9/14 Timer

The format of the command byte for the counter mode is
as follows:
D7 DO

O x| 1 x| 1] 1]1

L Sethighfor
} command byte.
Channel Reset.

Set high for Time Constant
1o follow.

Set high for clock/trigger
on rising edge.

Set high for counter mode.
Set low to disable interrupts.

The command byte is written to the Channel 2 Control
Register. This then followed by an integer value, which is
written to the Time Constant Register to set the output
clock rate.

The formula for the clock frequency output {Fck in Hz) in
timer mode is as follows.

Fck = 2333333/(Prescaler x Time Constant)

The formula for the clock frequency output (Fck in Hz) in
counter mode is as follows.

Fck = 163800/Time Constant
Further details are given in the chapter on Sound Generation.

Timer 2.8/15

2.8/16

Channel 3: System Clock Interrupt

Channel 3 is initialised by the BIOS to generate an interrupt
every 20 ms to act as a System Clock.

The interrupt service routine reads the current value in the
Downcounter Register, to determine when the interrupt was
generated. |t then updates the BIOS clock and performs
other timer-related routines.

The format of the command byte is as follows:
D7 DO

i10l 0y 1O Tyt

L Set high for
[command byte.
Channel Reset.

Set high for Time Constant
to follow.

‘Set low to start count when
Time Constant is loaded.

Set high for clock/trigger on
rising edge.

Clockinterval prescaler: setlow for x256.

Set low for timer mode.
Set high to enable interrupts.

This command byte is written to the Channel 3 Control
Register to set the channel into timer mode, with a clock
prescaler of x 2b6. Then an integer value of 182 decimal
(B6H) is written to the Time Constant Register, to set the
output clock rate at 50.08 Hz.

Return from Interrupt Sequence

At the end of an interrupt service routine, a two-byte RETurn
from Interrupt {RETI} command, has to be issued to the CTC
to allow other interrupts to be serviced. The two bytes in the
command are EDH, followed by 4DH.

The RETI sequence is generated by writing these fwo
command bytes in sequence to port 30H in the System
170 Space.

Timer

Contents

Introduction

Details
General
Generating Sound
Address allocation

Programming Considerations
General
Initialisation
Simple tones
Complex sounds

Illustrations

1. Sound generation

Sound Generation 2.70/7

The sound generator is a single channe! “device”. It can be
programmed to generate simple audio tones, audio noise, or
much more complex waveforms in the form of synthesised
sounds, over the frequency range 600 Hz to 3 kHz.

The programmer has independent control over the
frequency, tone, volume, and duration of the audio output
produced from the sound generator.

The “device” is also used by the BIOS to generate:
1. The keyboard click, whenever a key is depressed.

2. The bell tone, which is used as a warning signal in a
number of applications.

Instead of using a proprietary sound generator chip as the
source for driving the internal speaker, the sound generator
“device” is formed by two programmable elements which are
also employed for a variety of other purposes. These are the
two Zilog devices: the Z80 Serial Input/Qutput {SI0)
controlier, and the Z80 Counter/Timer Circuit (CTC).

The other functions that these two devices are used for are
discussed in detail in the chapters Serial Interface and Timer.

2.710/2 Sound Generation

DATA BUS

CONTROLBUS)

210 seueca‘—p TE

a2——
Al

DATA 8US

CONTRAQL BUS

il

TRCSEECT — P E

oo
T
b7

AD

csl

€S0

r- 1
ICHANNEL‘
Z
oAG b= = — =

280 CTC

!

co
0
o7

ZBQBIO/2

M
iGAa
fb

Jair

S N Y
] 1

H H
| TXCKA_L GHANNEL A (PART)]
TRANSMIT |
CHANNEL

I
I
|
|
L

A&INTEF{RUPT REQUEST

BOHE INTR
AUXILIARY
INPUT
B ALDID
AUDIO AMPFLIFIER

o I

GAIN CONTROL

Figure 1. Sound generation.

S

ound Generation 2.70/3

Details

General

The sound generator circuitry consists of a loudspeaker {16
Ohm, 0.4 W) driven by an audio amplifier. It is fed with a
pulsed signal from the data transmit output (TxDA) of
Channel A in the Z80 SI0.

The channel is programmed to operate in the byte oriented
synchronous mode, Monosync. This matches the
requirements of the data receive input of Channel A, which is
used as the input for data from the infra-red keyboard.

The block diagram in Figure 1 shows the main functional
components.

Programmable facilities within the SIO allow the audio
output to be switched off and on, and also provide the means
of controlling the audio output level.

On/off switching, which sets the duration of an output
signal, is controlled by writing to a register within the SIQ.
A bit setting within the register enables/disables the
transmission from the SIO.

The volume is controllied by writing to a SIO register to set
the state of two programmable outputs that are normally
used as modem control lines; RTSA and DTRA. The
combination of logic states on these two outputs allows the
output volume to be set to one of four discrete levels.

The frequency of the pulsed audio output signal is set by the
input clock frequency to Channel A of the SIO (via TxCIkA).
This clock frequency is generated by the Z80 CTC.

A bandpass filter in the amplifier section (25 Hz to 7 kHz)
attenuates the high frequency components in the audio
output signal, thereby smoothing the pulsed square wave
signals from the $10. The loudspeaker then further limits the
frequency range of the signal from 600 Hz to 3 kHz.

The speaker is wired to a 2-pin Molex connector located half
way down the left side of the System Board. An auxiliary audio
input is provided via another 2-pin Molex connector (next to
the internal Expansion Slot), to allow other devices to use
the loudspeaker. It's nominal maximum input level is 50mV.

2.70/4 Sound Generation

Generating Sound

Sound can be generated by one of two methods.

The first method can be used to produce audio tones and
simple noises.

The second method can be used to produce much more
complex waveforms and synthesised sounds.

The first method requires programming channel A of the S10
to repeatedly transmit a sync byte to the audio amplifier. This
is the sync header byte of a normal monosync transmission.
The regularity of the bit pattern within the 8-bit sync byte
contirols the purity of the output tone. The frequency of the
output is controlled by timer pulses generated by Channel 2
of the CTC. These pulses act as the baud rate control for the
synchronous transmission.

The second method requires programming channel A of the
SI10 to transmit a series of data bytes, as in a standard
monosync transmission. Complex sounds can be produced
by varying the data sent to the SIO in combination with
varying the frequency of the output via control of the CTC.

The two methods require slightly different programming
sequences. These are described in the section Programming
Considerations.

The SIO Channel has an associated set of Write Registers to
control its operations. Write Register O is used to reset the
channel; for example, following an interrupt. Write Register
1 is used to enable particular types of interrupt.

Data for transmission (as required for the second mode
described above} is written to the Channel A data port.

There is also a pair of Read Registers in Channel A. These
record the current state of channel transmit and receive
operations. Full details of all SIO registers are provided in the
chapter on the Serial Interface.

The CTC has a Control Register and a Time Constant
Register. The Control Register is programmed to set the
required CTC mode. The Time Constant Register is loaded
with a value relating to the period of the fundamental
frequency of the sound output transmissions. Full details of
these CTC registers are provided in the chapter on the Timer.

Sound Generation 2.10/5

Address allocation

The system software views the control registers in the SIO
and the CTC, and the data register in the SI0, as an array of
ports in the System 1/0O Space.

The port addresses are defined by the chip select and other
System Address Bus connections to the SIO and the CTC.
The ports which are addressed in connection with sound
generation are listed below. The usage of each register is
discussed in the later section Programming Considerations.

Address Channel Register Access

14H CTC 2 Control/ Write only
Time Constant

20H SIO A Data (bytes for Write only
transmission)}

22H SIO A Command Write only
(Write Registers)

22H SIOA Status Read only

(Read Registers)

2.10/6 Sound Generation

Programming Considerations

General

The audio output can be programmed in two ways:

1. By the repetitive serial transmission of a single sync
byte. This method can he used for generating simpile tones.

2. By the interrupt-driven serial transmission of a series of
data bytes. This method can be used for generating
more complex waveforms.

The more regular the bit transitions in the transmitted bytes,
the purer the tone. An irregular sequence of bit transitions,
depending on its duration and frequency, can be used to
generate anything from a click to a whine.

The audio parameters listed below can be programmed
independently for either method of producing sound.

1. Waveform shape.

2. Frequency.

3. Volume.

4. Duration,
The waveform shape is determined by the bit pattern that is
pulsed out to the audio amplifier. In mode one described
above this is determined by the sync header byte written to

the SI0. In mode fwo, it depends on the pattern of bytes
written to the StQ for transmission.

The frequency of the bit pulses out of the SIO is set by
programming Channel 2 of the CTC.

The volume can be set at one of four discrete levels by
setting two control bits in SIO Write Register 5. These two
bits control the logic levels on the Channel A outputs, DTRA
and RTSA, to the pre-amp.

The duration of the output is controlled directly by enabling
and disabling a control bit in SIO Write Register 5.

Sound Generation 2.10]7

The SI0 transmits a pulsed output to the amplifier in both
modes. The characteristics of the amplifier and speaker,
bandlimit the high frequency components of the pulsed
waveform into the audio spectrum.

in mode one, by choosing a regular bit pattern for the sync
byte (e.g. 4 1's for the most significant bits and 4 O's for the
least significant bits) and programming an acceptable clock
frequency into the CTC, the SIO produces a rough equivaient
of a sinusoidal waveform.

Initialisation

The BIOS initialises SIO Channel A to operate in monosync
mode to enable it to receive data from the keyboard. The
data, write registers, port addresses, method of writing to
the S10, etc., for the initialisation procedure are detailed in
the chapter on the Serial Interface.

The BIOS sets up channel A to receive/transmit data in
monosync mode with an x1 baud rate clock. The
programmer/BI0OS then can control the sound output by
writing to various registers in the S10.

The following paragraphs detail the registers in the SIO and
CTC for controlling the sound output in each of the two
modes. They merely specify the registers and bits within the
registers of interest. For details of how to access the
registers, reference should be made to the appropriate
chapter describing the device (Z80 S0 - Serial Interface
chapter, Z80 CTC - Timer chapter).

Simple tones

In this mode, the programmer has to write a sync byte to the
SI0 and set up the required fundamental frequency of the
tone by writing to channel 2 of the CTC. He then can switch
the “tone” on and control it's volume by writing to another
register in the S10.

The sync byte is repeatedly sent to the amplifier at the
selected clock frequency until switched off.

2.10/8 Sound Generation

Waveform Shape
The bit pattern of the sync byte is set by writing to Write
Register 6 (WRG).

This is achieved by issuing two consecutive bytes to channel
A of the SIO (port located at 22H in the system [/O space).
The first byte is written to Write Register O to provide a
pointer o select Write Register 6. The second byte contains
the bit pattern as detailed below.

D7 DO WR6
b|b|b|bib|b|b|b

b = Bit settings as desired

Frequency

The frequency at which bits in the sync byte are transmitted
to the audio ampilifier is set by programming Channel 2 of
the CTC, which is located at port address 14H in the System
/O Space.

The channel is programmed by writing a command byte to
reset the channel Control Register, followed by an integer
value which is loaded into the Time Constant Register 1o set
the frequency. This is fully described in the chapter on the
Timer.

Volume

The volume is set at one of four discrete levels by
programming a fwo-bit code on the S10 Channel A outputs,
DTRA and RTSA. These two outputs are controlled by the
settings of two associated control bits in Write Register b.

This is achieved by issuing two consecutive bytes to channel
A of the SIO (port located at 22H in the system |/0 space).
The first byte is written to Write Register O to provide a
pointer to select Write Register 5. The second byte contains
the bit settings. Care shouid be taken not to modify any of
the other bits within the byte to avoid corrupting the
operation of the SIO. (This is discussed in the Serial Interface
chapter, under the heading of “Copy registers”}.

Sound Generation 2.70/9

The bits within Write Register 5 which control the volume
are as follows:

D7 DO WR5S

D7|D6|D5|D4|D3|D2|D1|DO
tv Volume setting

Transmission enable/disable
Volume setting

Loudness D7 D1
Level Q 0 O
Level 1 0 1
Level 2 1 0
Level 3 (Full volume) 1 1

Duration

The duration of the output is controlled directly by clearing
and setting control bit D3 in Write Register 5 of SIQ
Channel A.

This can be done at the same time as the volume is set, as
described above.

Complex Sounds

Complex sounds can be produced by programming transmit
channel A of the SI0 to send a monosync transmission. The
programmer has to define his desired waveform as a pulse
train and then write each byte to the SIO under interrupt
control.

Enabling the transmit interrupt

For complex sound synthesis, SIO Channel A must be set to
generate an interrupt each time the transmit buffer is empty.

The interrupt for transmit buffer empty is enabled by setting
control bit D1 in SI0 channel A Write Register 1.

2.70/70 Sound Generation

This is achieved by issuing two consecutive bytes to channel
A of the SiO (port located at 22H in the system 1/ O space).
The first byte is written to Write Register O to provide a
pointer to select Write Register 1. The second byte is issued
with D1 set. Care should be taken not to modify any of the
other bits within the byte to avoid corrupting the operation
of the SIO. {This is discussed in the Serial Interface chapter,
under the heading of “Copy registers”).

Waveform

Once the transmit interrupt is enabled, the SO will generate
an interrupt every time it's 8-bit transmit buffer is empty. The
associated interrupt service routine has to be located at the
address pointers specified by the interrupt type vector 58H.

The interrupt service routine has to write a data byte to the
SIO Channel A data port, at port address 20H in the System
I/O Space, every time an interrupt occurs.

If the interrupt request is not serviced in time for the next
byte to be transmitted, then the transmissions default to
repeatedly sending the sync byte to the audio amplifier, as in
tone generation. Data transmissions resume as soon as there
is another data byte to send.

Frequency, volume, and duration

These audio parameters are set in the same way for complex
sound generation as they are for simple tone generation.
Please refer to the previous subsection.

Sound Generation 2.10/17

Contents

Introduction

Details
General
Interface Details
Interface Connections {Outputs)
Interface Connections (Inputs}
Disk Drive Mechanism
Read/Write Heads
Head Positioning Mechanism
Head Load Mechanism
Sensors and Detectors
Drive Switch Settings
Drive Specification

Disks
General
Disk Precautions
Disk Insertion/Removal
Write Protecting
Disk Format

lllustrations

1. MicroFloppy Disk Drive
2. Interface block diagram
3. Connector location

4, Drive Select Control

5. Drive Motor Control

6. MicroFloppy Disk

Disk Drive 2.71/[17

on

Bk %

introduct

This chapter provides information on the disk drive fitted
internally within the Apricot F1, the Sony OA-D32W. The
drive is characterised by incorporating two read/write heads
and utilising 80 track double-sided MicroFloppy disks. It is
possible to use (format, read from/write to} 70 track
MicroFloppy disks within the 80 track drive. {The drives are
physically compatible with 70 track MicroFloppies and the
BIOS software is configured to support this feature).

The disk drive is mounted directly onto a metal sub-chassis
assembly in the base of the System Unit. [t is secured in
position by four screws which connect the drive to the
sub-chassis frame.

Connections from the disk drive controlier, the Floppy Disk
Controller on the System Board, are linked to the drive via a
26-way ribbon cable assembly. Power supply connections to
the drive also originate from the System Board and are
provided by a 4-wire cable assembly.

Note:

fo avoid the possibility of damage occurring to the

read write heads of the drives within the computer during
transit, packing disks should always be inserted into the drive
sfots prior to transportation. If packing disks are not installed
prior to transportation, excessive vibration during transit
may cause the heads to crash together resulting in
unrepairable damage.

Do not:

1. Switch the machine on with the packing disk in the
drive slots.

2. Insert the packing disks into the slots whilst the power
supplies are present.

21712 Disk Drive

Figure 1. MicroFloppy Disk Drive

Disk Drive 2.771/3

Details

General

The disk drive contains all the necessary electronics and
mechanics for transferring MFM encoded serial data
between the MicroFloppy disks and the System Board.

The electronics consist of:

1. The interface to the disk controller (housed on a single
printed circuit control board located at the base of the
drive).

2. A series of sensors for detecting various conditions
within the drive (e.g. When the heads are positioned
over the first track defined as Track O of the disk, when
a disk is in the drive, etc.).

3. The read/write head transducer circuitry for reading
and writing data from/to the disk.

The mechanics consist of the disk drive mechanism, the disk
loading/eject mechanism, and the mechanisms for
positioning and engaging the read/write heads.

Interface Details

Connections between the disk drive and the System Board
consist of four types; MFM encoded data signals, control
input signals, status output signals and power supply lines.
The latter is supplied via the four wire cable assembly; the
remaining three types via the 26-way ribbon cable,

All signals supplied via the 26-way ribbon cable are driven by
open collector 74 series logic gates, apart from the Index
Pulse, which is driven by an open collector transistor.

The function of each connection is detailed in tabular format
following the interface connector location diagram.

21114 Disk Drive

DRIVE SELECT O
DRIVE SELECT 1
MOTOR ON
(S50) HEAD SELECT
STEP
DIRECTION

FLOPPY HEAD LOAD

DISK ————
INTERFACE WRITE GATE
WRITE DATA

READ DATA

- DISK

TRACK OO0 DRIVE
INDEX
READY

WRITE PROTECT

Y

Y

L |

y

Y

A

+5V

POWER GROUND

SUPPLY
CONNECTOR GROUND

Y v.Y

+12V

Y

Figure 2. Interface block diagram

INTERFACE
CONNECTOR
CN109

POWER CONNECTOR
CN108

DRIVE SELECT Sw1

Figure 3. Connector Location
Disk Drive 2.71(8

interface Connections (Outputs)

Ready

Active state, logic low. When active, indicates
that a disk is within the drive, the drive is
selected, and the drive motor is rotating at the
normal operational speed (i.e. the drive is
available for a data transfer operation}. The time
taken for Ready to be set active with two other
conditions already met following:

1. Drive select being set active is 0.5 ps.

2. Insertion of a disk is of the order of
1.6 seconds.

3. Motor on set active is in the order of
400 ms.

Whrite
Protect

Active state, logic low. When active, indicates
that the disk is write protected. If the drive is not
selected, the output is set to logic high,
regardless of the disk status.

Index

Index pulse which acts as the reference for the
start of a track. Short duration negative going
pulse (150 to 350 us}, generated once per
revolution of the disk (i.e. every 100 ms at
normal operational speed). If the drive is not
selected, the output is held at logic high.

Track OO

Active state, logic low. When active, indicates
that the heads are positioned over the first track
on the disk. If the drive is not selected, the
output is set to logic high regardless of the
position of the head.

Read
Data

MFM encoded serial data stream from the disk
during disk reads. [f the drive is not selected, the
output 1s forced to logic high.

2.11/6 Disk Drive

Interface Connections (Inputs)

Drive Drive Select O and Drive Select 1. These outputs

Selects provide the capability for selecting one of the
drives in a dual disk drive environment. The
combination of states on these lines determine
which drive is selected for operation. Normal
decoded select status from the System Board is
one Drive Select set low with the second select
line set high. If Drive Select O is set low, the drive
configured as drive 2 by a switch at the rear of
the unit is selected for operation {see Drive
Switch Settings for more details). Conversely, if
Drive Select 1 is set to logic low, the drive
configured as drive 3 is selected for operation. -

Motor On Active state, logic low. Controlied by the BIOS
software. The drive is configured by a switch on
the underside of the unit so that the drive motor
is switched on only when a disk is within the
drive and Motor On is active.

Step A negative going pulse generated by the disk
drive controller which moves the read/write
heads, if the drive is selected. Each pulse causes
the heads to be moved to an adjacent track
location, in the direction specified by the
direction input.

Direction For each valid step pulse, the head moves in one
track location towards track 79, if the direction
control line is at logic low; and one track location
towards track O, if at logic high. If the head is
already at either track O or track 79 and a step
pulse is issued with the direction input set to
move the head outside the normal track range,
the head is held stationary.

Contd.. .'

Disk Drive 2.771/7

Head
Select

Control signal used to select the side of disk for
the data transfer operation (Side Select output
from the disk controller}. A logic low sets the
lower read/write head into the active state
enabling data to be transferred to/from Side O of
the disk {providing Head Load is active}.
Conversely, a logic high sets the upper
read/write head active enabling data to be
transferred to/from Side 1 of the disk (providing
Head Load is active). The time taken for a
read/write head to become ready for data
transfers, following a change of state of the
Head Select signal is 100 us.

Active state, logic low. When active, causes the
read/write heads 1o make contact with the disk
surfaces, providing the drive is selected. If the
drive is deselected, whilst the head load signal is
still active, the head remains loaded.

Active state, logic low. When active; enables the
drive write control circuits to receive the write
data from the disk controller; switches current
through to the read/write head selected by the
Head Select signal; and also enables the selected
head’s tunnel erase head. Set to the inactive high
state during disk read and all head positioning
operations.

Write
Data

MFM encoded serial data. Changes the polarity
of the current flowing through the selected
read/write head on each negative-going
transition, providing the following conditions are
met:

1. The drive is selected.

2. The Write Gate input is active.

3. A write unprotected disk is inserted.

4. The drive motor is rotating at operational
speed.

5. The heads have been loaded and are
stationary.

2.11/8 Disk Drive

Disk Drive Mechanism

The disk drive mechanism is a brushless direct drive motor,
which employs a velocity servo control circuit to ensure that
the disk rotates at a constant speed of 800 rpm. The drive is
configured so that the motor rotates only when a disk is
within the unit. Removal of the disk from the drive causes the
motor to stop. The time taken for the motor to reach the
normal operating speed following the insertion of a disk, is
the order of 1.6 seconds.

The servo control circuit also generates the index pulse once
per revolution of the disk.

Read/Write Heads

The two heads each consist of; a read/write element and a
pair of tunnel erase heads, and are mounted opposite each
other on the head guide arm. The tunnel erase section
provides guard bands for adjacent tracks. Current is supplied
to the read/write element of the selected head, on receipt of
an active Write Gate signal from the disk controller which
also activates the tunnel erase section.

Head Positioning Mechanism

The head positioning mechanism uses a stepping motor and
a guide arm controlled by a needie screw {o precisely
position the read/write heads over the tracks on the disk.
Control of the movement of the heads is supplied by the Step
and Direction inputs from the disk controller. On application
of the power supplies, the drive automatically generates
control signals to position the heads over Track O.

Head Load Mechanism

Head loading is controlled by the Head Load signal from the
System Board. When the signal is active, one head makes
physical contact with the lower surface of the disk; the
second head makes physical contact with the upper surface.
The Disk indicator on the front panel of the unit remains
ifluminated, as long as the head remains loaded. Head
selection is determined by the Head Select input. This selects
the side of the disk for a transfer operation by activating the
read/write head transducer circuits.

Disk Drive 2.77/8

Sensors and Betectors

A series of photo-sensors and associated detector circuits
are fitted in the drive. These generate status output signals to
the disk controlier, on detecting the conditions detailed
below.

1. A disk is within the drive (Ready).

2. The disk is write protected {Write Protect).

3. The heads are positioned over Track O (Track 00}.
4. The start of each track {Index Pulse).

Drive Switch Settings

Two switches are located on the drive, which are set
according to the application of the drive within the system.
One switch {(SW §101) determines which of the two drive
select input signals switch the drive to an operational
condition. The second switch (SW S102) determines the
method of switching on the disk drive motor.

The drive select switch is a 4-position switch located at the
rear of the unit, as illustrated below.

1M

<t T Ie
DRIVE NO. 1

1N

<] T T 1+
DRIVE NO. 2

1

<l 1 -
DRIVE NO. 3

1

«F 11—
DRIVE NO. 4

CRIVE SELECT SW $101

Figure 4. Drive Select Control

This switch (in theory) provides for four drives to be
daisy-chained, with each one able to be uniquely selected by
the two drive select input lines.

2.17]10 Disk Drive

The decoding circuit of the Floppy Disk interface circuitry on
the Interface Board only allows two different combinations
of states on the drive select input lines. These are drive select
0 at logic low, with drive select 1 at logic high; and drive
select O at logic high, with drive select 1 at logic low. Due to
this fixed decoding on the drive select inputs, the switch has
to be set to the positions as detailed in the following
paragraph.

In the standard single disk drive system, the switch on the
internal drive is normally set to drive position 2. If an external
second drive is daisy-chained with the internal disk drive, this
is normally configured as Drive 3.

The motor control switch is located on the circuit board in
the base of the unit, just behind the front panel (see
itlustration below). The switch must be set to position B, so
the disk motor rotates only when a disk is within the drive
and the contol input Motor On is active. Setting the switch to
position A, will cause the disk motor to rotate, regardless of
whether a disk is within the unit or not, when Motor On is set
aciive.

4— FRONT PANEL

>
DISK MOTOR CONTROL
SW S102
m

Figure 5. Drive Motor Control

Disk Drive 2.71/711

Drive Specification

Media

Data transfer
rate

Media life
Track density

Track-to-track
access time

Head load time
Head settling time
Head select time

Disk rotational
speed

Dimensions:

Height
Width
Depth
Weight

Current
consumption

Environmental
conditions:

1. Operating
Temperature
Humidity

2. Storage

Temperature
Humidity

2.11/72 Disk Drive

3.5 inch 80 track double-sided
MicroFloppy Disks. Soft-sectored with 9
sectors per track, b 12 bytes per sector,
producing a total formatted data
capacity of 720 Kbytes per disk.
Encoded with double density MFM data.

500 kbits/s.

More than 3 x 10% passes/track.
135 tracks per inch.
12 ms.

60 ms.
30 ms.

100 us. {Time taken for a read/write
head to become operational, following a
change of state on the Head Select input.)

600 rpm (power-up time approx. 1.6
seconds after insertion of the disk).

2.0 inches (5 Tmm)}.
4.0 inches (102mm).
5.1inches (130mm).
1.5 Ibs. {700g).

+ 12V supply: Typically 0.3A (max. 1.6A)
+bV supply: Typically 0.48A (max. 0.8A)

40F to 115F {5C to 45C).

20% to 80% relative humidity, with a
wet bulb temperature of 85F (29C) and
no condensation.

-4QF to 140F {-40C to 60C)
5% to 95% relative humidity,{no
condensation}).

Hisks

General

Note: 7o ensure complete campatibility with the Apricot,
only ACT approved MicroFloppy disks should be used with
the disk drive. Using non-ACT disks, not manufactured to the
same high standard. may result in intermittent read and write
errors, rendering information stored on the disk totally
unintelligible.

The Sony OA-D32W disk drive are designed to use 3.5 inch
80 track double-sided MicroFloppy disks. The disks are
encased in a rigid plastic shell and feature an automatic
shutter and a metal centering hub.

The shutter protects the disk media from contamination by
dust, dirt or fingerprints, allowing the disk to be easily
handled without affecting the integrity of stored data. When
inserted into the drive, the shutter automatically slides open,
allowing the read/write head of the drive access to the
recording media. Removal from the drive automatically
closes the shutter.

The metal centering hub ensures that the disk is accurately
positioned on the disk drive motor spindle.

Disk Precautions

The same precautions apply to the MicroFloppy disks as any
other magnetic recording media.

Do not:

1. Touch the disk surface.

2. Allow the disk to be placed in the proximity of other
magnetic materials or other sources of magnetic fields.

3. Expose the disks to heat or direct sunlight.

4. Attempt to clean the disk surface.

Disk Drive 2.77/73

Disk insertion/Removal

Insert the disk into the drive shutter side first, with the metal
centering hub facing downwards. The disk should slide into
the drive with the minimum degree of force. Immediately the
disk is inserted, the heads are momentarily loaded to seat the
disk properly onto the drive spindle. Improper insertion
results in the disk not being accepted by the drive.

Remove the disk by pressing the disk eject button. The disk
gject button should not be pressed, whilst the Disk indicator
is illuminated.

Write Protecting

Write protecting the disk is achieved by sliding the tab (as
illustrated below) to the lower position, creating a window in
the lower left corner of the disk. To allow the disk to be
written to once more, slide the tab back over the window.

Disk Format

Each of the 160 tracks on the disk is divided into sectors
under software control {i.e. soft sectored), with the
beginning of each track indicated by the index pulse
generated by the drive motor assembly. The software track
format chosen for the disks is a derivation of the IBM system
34 format for 8 inch disks. This uses double density MFM
encoded data, with 9 sectors per track and 512 bytes per
sector. The total storage capacity of the 80 track

double-sided disk is thus 720 Kbytes of formatted data (160
x @ x 512 bytes).

2.17/14 Disk Drive

SHUTTER

\

v

AqTOPMOICE T
sy
N

MICRQ
FLOFPY BISK
JMUFHLE SICED

\

.

HEAD

WINDOW SHU'[X'TER

BRE

(23

[

!

WRITE PROTECT

WINDOW

Figure 6. Microfloppy Disks

\

LABEL AREA
METAL CENTERING

A
7 "

HUB

WRITE PROTECT
TAB

Disk Drive 2.77/15

%

e

Kevhoart

Contents

introduction

Details
Mechanics
Circuitry
Keyboard Scanning
Data Transmission Format
Keycode Data Encoding
Special Keys

lilustrations
1. Keycode Transmission Format

2. Synchronous Packet Format
3. X-Y coordinates

Keyboard 2.712]7

ntroguction

The Keyboard for the Apricot F1 is a full function keyhoard
featuring; 92 keytops, four “special” keys, a time and date
clock implemented in software, and an infra-red interface for
transmission of keycodes and data to the Systems Unit.

It is an identical design to the Keyboard found on the Apricot
Portable and is directly compatible and interchangeable. It
employs the same circuitry, the same key layout, and uses
the same keycode encoding scheme/data transmission rate
as found on the Portable keybhoard. (The only difference is in
the colour of the Keyboard plastics).

The maximum practical distance of operation is specified at
2 metres. The Keyboard will work at greater distances than
this but the difficulties in viewing the screen so far away in
any other mode apart from 40 column render this sort of
usage of academic importance only.

A “light-pipe” is supplied with the F1 to connect the
Keyboard and Systems Unit together in multiple machine
environments where interference from other users may
occur. One end of the pipe plugs into the recessed LED
socket on the front edge of the Keyboard. The other end
must be plugged into the right hand LED socket on the
Systems Unit (as viewed from the front) to prevent
interference from other infra-red sources.

The power supply for the Keyboard is provided by four AA
cells. These are located behind a cover panel accessible from
the underside of the Keyboard. The operational lifetime of
the batteries is approximately 6 months under normal
everyday usage.

2.12{2 Kevboard

Letails

Mechanics

The mechanics of the Keyboard are of a comparatively
simple design, consisting of a single circuit board, the main
key switch array, the four fixed function keys and four

AA batteries.

The batteries are located behind a removable cover panel in
the base of the Unit. A coin or flat bladed tool is required to
gain access to the battery comparitment.

The Keyboard PCB is also fitted behind a removable cover
panel. As user access is not necessary to this area, there is
no easy coin-release slot.

The main key switch array is a single component which is
clipped into the plastic moulding and cannot be removed
once in position without damaging the array. It is linked to
the circuit board by a multi-way ribbon cable connector.

The four fixed function keys are tracked directly onto the
keyboard PCB.

The key tops of the key switch array are removable and can
be easily repositioned for custom keyboard designs.
Applying slight leverage underneath a key top releases it
from its normal location, but care should be taken not 1o lose
the springs.

Three infra-red LEDs are mounted on the Keyboard PCB and
are located on the front edge of the Keyboard. The LEDs are
spaced across the width of the Keyboard to provide a decent
spread of infra-red signal. This removes any restriction on
having to place the Keyboard directly in front of the Systems
Unit, and thus allows the user the maximum degree of
flexibility in siting the Keyboard.

Two of the LEDs are slightly proud of the front edge of the
Keyboard, the third is recessed. The third LED is recessed fo
allow the light-pipe to be plugged in. Transmissions from the
Keyboard are then supplied directly to Systems Unit down
the fibre optic link.

Kevboard

N

b

oy

The light-pipe does not switch off transmissions from the
other two LEDs; these will continue to transmit infra-red
when a key is pressed even though the light-pipe isin
position. {(Connecting the light-pipe into the right hand
socket on the front of the Systems Unit switches off the
infra-red receiver surrounded by the wide-angle lens, so that
infra-red from other sources will not be detected - See
Systems Unit chapter for more detail}.

Two buttons are located on the sides of the Keyboard {one
on each side). These release the spring-loaded feet which filt
the Keyboard for normal desk-top usage.

Circuitry

The circuitry on the Keyboard PCB consists of an NEC 7507
microprocessor, three infra-red LEDs and assorted
components for interfacing the 7507 processor to the
keyswitch array and LEDs. A circuit diagram of the Keyboard
is provided in an appendix to this manual.

The 7507 is a CMOS 4-hit single chip microcomputer which
has its own internal ROM and RAM. It also contains an
internal timer, a vectored interrupt structure and features 32
I/0 lines. The 1/0 lines are organised into eight 4 bit ports.
The ports are identified by a prefix which is the port number
followed by the port line number. e.g. P21 is port 2, line 1).

Keyhoard Scanning

The 7507 uses the standard method of row/column
scanning for detecting key closures in the keyswitch array
and also the closure of the four fixed function keys. The four
fixed function keys are mapped onto the bottom row of the
keyswitch matrix {port PGQO).

The scanning method is as follows. The 7507 selects a row
by setting the appropriate port output to logic low. It then
sequentially scans through all the columns looking for a logic
low input on the appropriate input ports which indicates a
keyclosure.

The Shift and Control keys are not scanned in the same way
and are treated as special keys. These are wired directly to
input ports.

2.12/4 Keyboard

The keyboard processor is normally in a sleep mode and is
awakened every 15.6 ms. The 15.6 ms timer routine
performs two functions. It checks for key closures and also
updates the software time/date clock.

If a key has been pressed, the keyboard remains awake and
decodes the selected key, formats it, and then transmits it to
the Systems Unit by pulsing the infra-red LEDs. If no other
key has been pressed the keyboard re-enters sleep mode to
conserve battery power.

When more than one key closure is detected in a single scan,
the 75607 software checks the validity of the closures to
prevent false key codes being issued. It does this by reducing
the area to scan by searching a “closed” key switch map until
it finds an unambiguous key closure.

Only keys which can be uniquely identified are encoded and
transmitted.

The total time taken between detecting a key closure to the
end of the keycode transmission is normally between 26 to
32 ms. At the end of the transmission, the processor rescans
the key switch and then enters sleep mode if no further key
is active.

The oscillator connected to the X1, X2 inputs of the
processor sets the sleep mode cycle. The processor cycle
time is set by the components connhected to CL1/CL2.

Data Transmission Format

The majority of the consumption of power on the keyboard is
taken by the three LEDs. In order to extend the battery life,
these are normally switched off and only pulsed on for the
transmission of data.

All keycode data is encoded into serial packet format,
consisting of 32 bits, prior to transmission {see below for
more details on the actual encoding format used). The 32 bit
serial data stream is sent via the data output (P31) to drive
the three LEDs.

The data is converted into a pulsed waveform by a
monostable circuit prior to forming the drive signal for
switching the LEDs on. The duration of the pulses and thus
the time the LEDs are switched on, is kept relatively short {of
the order of 15 us) to minimise the amount of battery power
consumed.

Keyboard 2.72/5

The monostable circuit translates the bit stream into the
waveform format as shown in Figure 1. This is in effect a
transmission packet consisting of an interleaved clock and
data waveform. Encoding the data in this way allows the
decoding circuits on the Systems Unit to easily compensate
for variations in the data rate.

Data 18" are signified by a pulse within the clock pulse time
period and data “0s” signified by an empty time slot.

o seqones fo 0 e g e |

T = 2600s (rningh)
roage 200 1 J0C a5

Figure 1.Keycode Transmission Format

Keycode Data Enceding

To maximise system reliabilty, and ensure that data
transmitted from the Keyboard is not misinterpreted on the
Systems Unit, the keycode data is encoded into a special
format.

The Keyboard formats the valid key closures into a serial
packet consisting of a four byte sequence. The format is the
synchronous transmission mode Monosync and is operated
at a fixed data rate of approximately 3.85 Kbits/sec. The first
byte is the sync header. All the following bytes are the actual
data. These are encoded using Hamming codes {see Figure 2).

2.12/6 Keyboard

SYNC HEADER STATUSBYTE = pwlet———— [DATABYTE 1 ———twjsbe——— DATABYTE? ———————
LSB

MSB | LSR MEE | LESE MEB
1c|1*ic|| [1|n]1|cim}c2|m1|::3[MzJM31M4icalmIczlvofca|v:1~r2|~r3|mlc| |cz|xo'ca'x1|x2f>«3[c4|

lt——— Y-COORDINATE ————pt——— X-COORDINATE ———py

SHIFT KEY STATUS

CONTACQL KEY STATLIS

REPEAT STATUS

LINK STATUS

Figure 2. Synchronous Packet Format

This method enhances system reliability in two ways:

1. Using Monosync means that the receiver circuits on the
Systems Unit (the Z80 S10 of the serial interface), have
to first detect a valid data pattern, {the sync header
byte) before it regards the data sent as being valid. This
provides a high degree of protection from other
infra-red sources, as they will not contain the sync
header and will therefore be totally disregarded.

2. Using a Hamming format to encode the data enables
the BIOS software in the Systems Unit to check the
integrity of the data received from the Keyboard. it
produces a highly reliable system for proving the
validity of the Keyboard data, providing a measure of
protection against a transmission which contains a valid
sync byte, but invalid data (missing or corrupted data).

The four byte sequence consists of the Sync header byte
(DAH), a status byte and two data bytes. The status byte and
keycode data bytes are encoded with a Hamming format.

Kevboard 2.12]7

The status byte contains four bits {a nibble) of information as

follows:
bit O

bit 1

bit 2

bit 3

Whether the key pressed is pressed in conjunction
with the SHIFT key. This state is indicated when the
Shift bit is set high.

Whether the key pressed is pressed in conjunction
with the CONTROL key. This state is indicated
when the Control bit is set high.

Whether the key code transmitted was the same
key code as transmitted immediately prior to the
current transmission. The Repeat Status bit is set
high to indicate that a key is being held down
(repeated).

That the data transmitted to the Systems Unit is
from the Keyboard. This bit is indicated by the Link
Status bit and is always set low for a keyboard
transmission. (This bit allows the BIOS to
differentiate between Keyboard and Mouse data
which uses a similar format but sets the Link Status
bit high).

The first keycode data byte contains a data nibble {(Nibble 1}
which is the Y-coordinate of the selected key in the keyswitch
matrix. The second data byte contains a data nibble {Nibble
2) which is the X-coordinate of the selected key in the
keyswitch matrix.

The X-Y coordinates for each kéy are illustrated on Figure 3.
The coordinates are identified by the numbers in the top

left-hand

corner of each key. For example, the CAPS LOCK

key is located at X-coordinate 2H, Y-coordinate BH {i.e. the
keyswitch matrix position 2,11 in decimal format).

2.12{8 Kevboard

S31BUIPI00N A-X '€ aunbiy

Keyboard 2.12/8

P £ 1| e Gl G V () ! C

i ol

ey
=

e i

All keys apart from the RESET, REPEAT RATE, SET TIME,
TIME/DATE (and SHIFT and CONTROL which are not in the
matrix) are transmitted from the keyboard by encoding the
X-Y position of the detected key with Hamming codes in the
format as described above and perform no other function.

The handling of the RESET, REPEAT RATE, SET TIME and
TIME/DATE keys are slighly different and are discussed
under the section headed Special Keys. The SHIFT and
CONTROL keys are encoded into the status byte only and
are never transmitted as a X-Y keycode.

Hamming Format

The encoding of the status and keycode data nibbles uses a
Hamming distance of four. {The definition of the Hamming
distance equates to the fact that for all possible
combinations of encoded bytes, each byte will have at least
four bit positions different when compared with all other
encoded byies).

A Hamming distance of four allows the BIOS to detect any
two-bit errors and also correct any single-bit errors in the
transmitted data. Each data nibble is converted into a
Hamming encoded byte by the addition of four check bits.

The Hamming encoded bytes are produced by generating
the check bits and then combining them with the nibble of
data in the format detailed below.

LSE MSB

CT|C2|M1|C3 | M2M3{M4|C4 Hamm;gg encoded
yte

C¥* corresponds to a check bit

M#* is a bit within the data nibble. The position of the LSB is
specified by M1, the MSB hy M4,

The check bits are generated using the algorithms detailed
below.

Cl=M1EOM2EOM3
C2=M1® M3 M4
C3=M2@M3® M4
CA=C1HC2EAMIE C3OM2A M3IE M4

2.12]70 Kevboard

Since a nibble of data can only have one of 16 values (OH to
FH), the data nibbles can be translated into the
corresponding Hamming encoded bytes by using a simple
look-up table. This is as follows:

Data Nibble Encoded Byte

OH 80H
TH O7H
2H 19H
3H 9EH
4H 2AH
5H ADH
6H B3H
7H 34H
8H CBH
9H 4CH
AH 52H
BH D5H
CH 61H
DH EGH
EH F8H
FH 7FH

Special Keys

Some of the keys are not transmitted from the Keyboard in
the same way as decribed above. These are the four keys
RESET, REPEAT RATE, SET TIME and TIME/DATE,

Reset

When the 7507 microprocessor detects that the RESET key
has been pressed it does not transmit a hamming encoded
keycode. Instead, it sends sync characters (the byte value
S5AH) at a set rate of one sync character every 15.6 ms for as
long as the key is held down.

If the key is held down for approximately one second, the
accumulative effect of receiving the multiple sync bytes on
the Systems Unit generates a hardware reset. This
mechanism is discussed in the System Detail chapter.

Keyhoard 2.72]/717

Repeat Rate

The Repeat Rate key is never transmitted to the Systems
Unit. Instead it has the effect of acting as a toggle for varying
the rate at which characters are sent from the Keyboard
when a key is held down (i.e. the auto-repeat rate}. It allows
the rate of transmission to be either one of two values:

1. Eight characters per second which is the slow
auto-repeat rate setting (one transmission every
125 ms).

2. Eighteen characters per second which is the fast
auto-repeat rate setting (one transmission every
hbB ms).

Set Time

The function of the SET TIME key is to aliow the user to reset
the time and date of the internat keyboard clock.

When the SET TIME key is pressed, the 7507 stops the
internal clock and transmits the SET TIME keycode to the
Systems Unit. The ROM BIOS on the Systems Unit decodes
this key and activates the 25th line on the display to prompt
the user to type in a new time and date. This action by the
BIOS happens both before and after boot.

The user must then type in the time and date as a string of
digits using the numeric keypad. Each digit is transferred to
the Systems Unit in the normal four-byte Hamming encoded
format. Any non-numeric key during the programming
sequence causes the 7507 to restart the internal clock and
transmit the non-numeric keycode. This informs the BIOS to
terminate the operation.

The user must type in the sequence in the order detailed
below with no spaces or other character between the digits
(e.g. 100001 128b sets the clock for 10 am on the 1st
December 198b}).

HHMMDDMMYY

At the end of the 10 character sequence, the user must then
press any key to set the internal clock to the specified time
and date and also restart it. {Seconds are automatically set to
zero by this action).

The updated time and date information is not used by the
B1OS unless the information is re-transmitted by the
Keyboard. This action is performed by the TIME/DATE key.

2.12/12 Keyboard

Time/Date

The function of the TIME/DATE key is primarily to transfer
the time and date generated by the internal Keyboard clock
to the ROM BIOS clock. It also performs another function,
that of transmitting the version number of the Keyboard
software.

When the key is pressed, the 7507 transmits a sequence of
16 data packets to the Systems Unit. Each packet is in the
usual four byte synchronous format and are separated by 35
ms intervals. The first data packet is the TIME/DATE
keycode packet. The following packets include the software
version number and the time and date information.

The format of the sixteen data packet sequence is as follows:

Packet Pre-Hamming Code Function

Formatx
1 S031 Time/Date keycode
2 S41x Revision number
3 S42x Hours {tens)
4 S43x Hours {units)
h S44x Minutes (tens}
6 S4bx Minutes units)}
7 S46x Seconds {tens)
8 S47x Seconds (units)
9 S48x Day {tens)
10 S49x Day (units)
11 S4Ax Month (tens)
12 S4Bx Month {units)
13 S4Cx Year (tens)
14 S4Dx Year (units)
15 S4Ex Not currently used
16 S4Fx Not currently used

* The first value {S) is the Sync byte.

The second value is the Status nibble. The value of 4 in
alt the packets following the keycode corresponds to the
Repeat Status bit set.

The third value in all packets apart from the Time/Date
packet is a data packet identity nibble.

The fourth value {x) corresponds to the data nibble as
described in the Function Column.

Keyboard 2.12/13

Section 3
Software
Detail

Contents

Introduction
Bootstrap
Initialised drivers
Initialised BIOS
Built-in functions

Memory Map
Software interrupts
Hardware interrupts
Pointers
Ascii and Bit Screen Images

RAM BIOS for MS-DOS
Disk Label Sector and Configuration Table

Hlustrations
1. Miemory Map

Guide to the BIOS 3.7]7

ntroduction

The BIOS is the Basic Input Qutput System of the Apricot. It
exists as two distinct parts in the machine, a permanent part
in ROM and a loaded part in RAM.

The ROM BIOS provides the primitives necessary for
powering up the Apricot or performing a system reset. it
contains the hardware independent Drivers which control

input and output to the hardware devices and diagnostics
software.

The ROM BIOS also contains a Generic interface called the
Control Device. This interface enables portable software to
be writien for the Apricot family even though Hardware
Devices and their drivers within the ROM are totally
different.

The RAM BIOS and other non-resident System files are

loaded and initialised by the Bootstrap facilities within the
ROM BIOS.

The RAM BIOS is the interface between the operating
system and the ROM BIOS. It is unique to the Operating
System — in this case MS-DOS.

The following sections provide a guide to the BIOS and in
particular to the following:

1. The “Bootstrap” procedure

2. The Label sector, system configuration data and
minimal requirements of a Boot disk

3. The initialisation of the BIOS and Device drivers
4. The Memory map and reserved areas
5. User interrupts

3.1/2 Guide to the BIOS

Bootstrap

The Bootstrap procedure is invoked by either a “cold start”
i.e. powering up the machine or from a “warm start” by
pressing the keyboard RESET button and holding it down for
approximately 1 second.

A “cold start” performs diagnostic functions and a complete
configuration of the Operating system.

A “warm start” assumes that certain data created by the
“cold start” is intact but to ensure that this is reliabie it
consults the “water mark” data in RAM for pre-defined
values. The “water mark” is detailed in a later section on
Pointers. The diagnostics are not run.

Following either start up the hardware devices whose drivers
are resident in the ROM BIOS and their respective data areas
in the RAM BIOS are initialised.

The initialisation of each driver is discussed in the next
section.

The ROM BIOS then displays the start up screen which
includes a logo, total capacities of floppy (in Kbytes) and

Winchester disks (in Megabytes) where applicable together
with the RAM size ({in Kbytes}.

If a diagnostics error occurs then a failure code, as detailed
in Appendix A, is displayed.

The ROM BIOS then initialises a 10 second timeout, displays
“Flashing hand” and key icons and waits for the operator to
press the TIME/DATE key. Depression of the TIME/DATE
key before the timeout elapses ensures that the system clock
is updated from the keyboard which has a battery backed
clock.

On receipt of the TIME/DATE key, or on expiry of the
timeout, the ROM BIOS commences searching for a
Bootable disk. The Floppy drive is searched first. If it does
not contain a correct disk then if there is a Winchester,
loading will be carried out from it instead.

Guide to the BIOS 3.7/3

Certain fields within the Label Sector of the disk identify a
Bootable disk. The Label Sector is detailed in full in a later
section. The following fields must, however, contain valid

Bootstrap data:
LBL__Boot__Disk offset OBh byte
LBL _winchester offset ODh byte
LBL __boot__locn offset 1Ah dword
LBl _.boot__size offset 1Eh word
LBL __boot__addr offset 20h dword
LBL _.boot__st__off offset 24h word
LBL__.boot__st__seg offset 26h word
LBL__BPBsctr__sz offset 50h]
to ; 16 bytes

LBL __BPBstart__sct offset BEh

Configuration Constants Area:

CNF_ver__lo — CNF_nnn offset 80h-FFh 128 bytes
If a Winchester disk:

WINbad __sect table offset 100h 32 words

It the disk is a valid bootable disk, the ROM BIOS will attempt
to load the sectors indicated by LBL _boot__locn and

LBL __boot__size from disk into RAM at the address given by
LBL _boot__addr. Note that the code to be booted must be
one contiguous block of sectors.

If successful the ROM BIOS loads up the internal
configuration table from the boot disk label sector (128
bytes starting at CNF _ver__io), clears interrupts and jumps
to the location given by:

LBL __boot.__st._seg:LBL__.boot__st__off.

If, however, there is a failure, an error number (as detailed in
Appendix A} is placed on the screen, and the ROM BIOS
deselects the drive until a new disk is inserted.

3.7/4 Guide io the BIOS

BT

e
Sermzal B
Cl

The list of drivers given below are resident in the ROM BIOS
and they are initialised by the Bootstrap procedure as
follows:

Screen Driver
This clears the display and homes the cursor.

Kevboard Driver

This clears out internal keyboard queues and status
indicators, and all keyboard input is ignored except for the
CALCULATOR, SET TIME, KEYBOARD LOCK, and
TIME/DATE facilities.

Disk Driver

This clears internal disk statuses and then tests for a second
disk drive by selecting it and checking for track O. Note that
the disk drives perform an automatic RESTORE on
power-up, thus activating the TRACKOO signal. These tests
take about 2.5 seconds and are only performed on a
power-on reset.

Printer Driver

This clears the internal (2 Kilobyte) printer buffer, and sets
the data strobe output line to idle.

RS-232 Driver

This initialises the RS-232 driver to the internal configuration
of 9600 baud, 8 bit per character, no parity, and 1.5 stop
bits for transmission and reception.

Clock Driver

This resets the ROM BIOS clock to midnight on the 1st Jan
1980 (days = hours = mins = secs = hundredths secs =
0000.), and sets the BIOS clock running.

Guide to the BIGS

3.1/5

Winchester Driver

This checks for the presence of a Winchester controller
board by testing for RAM in the Winchester buffer port. If
RAM exists there the ROM BIOS assumes the presence of a
10 Megabyte Winchester. The Winchester(s), if present, are
restored, and the label sector({s)} read to determine the actual
size of the drive(s).

3.7/6 Guide to the BIOS

nitialised BIUS

When the ROM BIOS passes control to the operating system
software loaded from disk the machine is in the following
state:

All 256 interrupt vectors are initialised, including all
hardware and ACT defined interrupts. Unused vectors are
set to point to a dummy handler in the ROM. Detection of a
non-resident driver can therefore be made by checking if it's
interrupt vectors point to an area above OF8000 hex.

A list of Software interrupts and reserved interrupts is
provided in a later section.

A pointer area as described in the section Memory Map is
initialised.

The Keyboard Table and Character Font are in ROM, so to
use a full set of characters, and to enable the reprogramming

of keys, the RAM BIOS loads a new font and keyboard into
its own RAM space and changes the pointers as appropriate.

The font provided in the ROM BIOS is a standard 128
character Ascii set, implemented in an 8x8 matrix. Refer to
the chapter on the keyboard driver for information on the
default keyboard table.

All hardware drivers are in an initialised state and can be
called immediately. However, it is recommended that these
drivers are initialised via the control device INIT calls
(command code Q), except for the Clock Driver which
should not need resetting, before the loaded operating
system makes use of them.

Guide to the BIOS 3.1]7

Built-in tunctions

While the ROM BIOS is waiting for a boot disk the user can
make full use of the following built-in facilities:

The Calculator

This appears on the 25th line of the screen, and is
activated/deactivated by the CALC key {Shift + F4).

Keys used by the calculator are: Numeric Pad 0-9 and {.),
ENTER, CLEAR, %, *, /, -, +, M+ {F3), M— (F8) and
RECALL (F7). After boot the calculator also responds to the
SEND (F9) key.

The SET TIME Key

At any time (before or after booting) the SET TIME key can
be entered. This displays a prompt on the 25th line for time
and date setting of the internal keyboard clock. The user
must enter the date and time as a string of digits from the
numeric keypad in the form HH MM DD MM YY (no spaces).
The time is sent to the Main Unit by entering the TIME/DATE
key. The screen prompt is removed if an invalid key is
entered, more than 10 digits have been entered, or the
TIME/DATE key has been pressed.

The TIME/DATE Key

This key can be pressed at any time, its function is to
transmit the keyboard’'s internal time and date to the main
unit, and is used during the boot process to start off the
boot. During normal operation there is no indication of entry
of this key — the ROM BIOS simply updates its internal clock
with the data received.

3.7/8 Guide to the BIOS

The Memory Map below shows the initialised state of the
Apricot after Bootstrap is compliete.

The ROM Bootstrap loads the RAM BIOS Code and Data
together with SYSINIT from the disk. SYSINIT is a module
responsible for loading and initialising MS-DOS and it is
discarded after use. D R

SYSINIT is then moved to a scratch area in high RAM. It then
loads the operating system MS-DOS and the system files
containing the Keyboard Table and character FONTs.

The illustration shows two possible states, one where the
Keyboard and FONT files are not available and the other
where they are.

To load a system without RAM based font and/or keyboard
table, the fields CNF_FONT _sec and/or CNF_KEY _sec
in the boot disk |abel sector must be set to zero. in this case
the limited ROM keyboard table and FONT are used by the
system.

The SYSINIT area is overwritten by MS-DOS.

Absolute addresses are given on the left of the diagram,
space occupied in kbytes on the right

The memory map shows both ROM and RAM areas. The
area between FBO00H and FFFFFH is ROM, and includes
the ROM BIOS code, default keyboard table and character
font, and default BIOS constants.

The keyboard table is a standard version. The font is a
standard 128 character Ascii set implemented in an 8x8
matrix.

The ROM BIQOS constants are copied to RAM during the
boot procedure, being amended there as necessary.

The area between 000000H and 005000H is used by the
ROM BIOS, and its layout is fixed; it is termed 'ROM
specified RAM'. [t comprises the interrupt vectors, BIOS
pointer area, Ascii screen images, and the ROM BIOS data,
stack and configuration table.

Guide to the BIOS 3.7/8

OFFFFFh
ROM BIOS CODE 27K
OF9400h
ROM KEYBOARD TABLE | 1K
OF9000h
ROM CHARACTER FONT | 2K
OF8800h
ROM BIOS CONSTANTS | 2K
OF8000h
ROM EXPANSION AREA | 32K
OFO000h
USER RAM
015A00h
MS-DOS | 17K
014400h —————f——————
MS-DOS | SYSINIT | 3K
011600h
KEYTAB.SYS | 1K
011200h ——————
2.5K (8 % 10)
SYSINIT | FONTSYS | 2.0 00
010000h
RAM BIOS CODE & DATA | 4K
OOFO00H TOP OF ROM SPECIFIED RAM
ROM BIOS DATA & STACK | 10K
00C800h
SCREEN BIT IMAGE 42K
002000h
VIDEO LINE POINTERS | 0.5K
001EQCh
RESERVED 1.5K
001800h
ASCII SCREEN IMAGE | 4K
000800h
BIOS POINTER AREA 1K
000400h
INTERRUPT VECTORS | 1K
00000Ch

Figure 1: Apricot F1 Memory Map

3.7/70 Guide to the BIOS

Software interrupts

The base page of the RAM is reserved for interrupt vectors.
These are double word Segment.:Offset pointers to the start
address of the interrupt handier routine.

The pointers conform to Intel standard format, i.e.

<address> + 3 : segment high
<address> + 2 : segment low
<address> + 1 : offset high
<address> + O : offset low

The location of a pointer is determined by muHliplying the
interrupt number by 4; i.e. the base address of the interrupt
FO hex pointer is at location 4 x FOH or 03CO hex.

A number of interrupts are specified as reserved by Intel and
Microsoft. These are:

Intel: 0 — 1F hex
MS-DOS: 20 — 3F hex

Software interrupts are initialised to point to a dummy
handler in the ROM BIQS. This handler simply executes an
interrupt return (RETI).

Further interrupts are reserved by ACT for BIOS and
Application use. These are listed below.

The BIOS initialises its software interrupt pointers by placing
the address of appropriate routines in the respective
interrupt vector location.

It is recommended that Application routines wishing to use a
software interrupt observe the following rules:

1. Save the existing pointer (including the dummy pointer).
2. Store their “routine” pointer at the vector location.

3. Save all registers on entry.

4. Restore all registers before exiting the routine.

5. Perform along iump to the “saved” pointer at the end
of the routine. This ensures that any unknown routines
will still be executed.

Note: The dummy routine is in ROM, i.e. all pointers to it
have a segment address greater than or equal to FOOO hex.
This is useful for determining whether a software interrupt
vector is in use. In turn this may also indicate whether a
loadable device driver is present.

Guide to the B/10S 3.71/717

OFFH - Clock Interrupt every 20ms
(see note 1 below)

Source: ROM BIOS
Input: none
Qutput: none

OFEH - Exec interrupt

Source: Application
Input: none
Qutput: AX = OFFFFH

OFDH - Spooler Interrupt

Source: Application
Input: none
Output: AX = OFFFFH

OFCH - BIOS Control Device interrupt

Source: RAM BIOS & Application
Input: AX,BX,CX,DX,SI
Qutput: AX - Other registers preserved.

OFBH - Mouse Interrupt 2

Source: Application
Input: none
Qutput: AX = OFFFFH

OFAH - Mouse Interrupt 1
- MicroSoft serial Mouse (see note 1)

Source: ROM BIOS
Input: AL = Mouse Data Byte
Qutput: Not applicable.

OF9H - Keyboard Interrupt
{see note 2}

Source: ROM BIOS
Input: AL = BL = Decoded Key
AH = BH = Count of characters in string
Output: AX = QFFFFH - pass key to DOS queue
AX = 00000H - ignore key
BL = Translated Character

OF8H - Voice Interrupt 3

Source: Application
Input: none
Output: none

3.7/12 Guide to the BIOS

OF7H - Voice Interrupt 2
(see note 1)

Source: ROM BIOS
Input: AX = Voice Key Code Packet
Qutput: none

OF6H - Voice Interrupt 7

Source: Application
Input: none
Qutput: none

OF5H - Mouse Interrupt 3
(see note 2)

Source: ROM BIOS
Input: AX = Mouse packet

bits -7 = XorYdata

bit 8 = 1is Y packet, Ois X packet
bit 9 = Switch 1 (1=o0on)

bit 10 = Switch 2 {1=on)})

bit 11 =1

bits 12-15 = undefined

Output: None
OF4H - External Expansion Interrupt Setup;

Replace External interrupt vectors and enable interrrupts.

Source: Application
Input: AL = O - Set External Interrupt 2 (Winchester)
AL = 1-Set External Interrupt 3 (general)
BX = Vector Offset Word
CX = Vector Segment Word
Qutput: BX = Old Vector Offset Word
CX = Old Vector Segment Word

OF3H - Voice Interrupt 4
Source: Application
Input: n/a

QOutput: n/a

Guide to the BIOS

=

wd .

177

3

OF2H - Special 25th line output
{For calculator & specialist applications)

Source: ROM BIOS and Application
Input: AL = data

CX = command
Output: none, all registers preserved

Commands:

CX =0, init. line 25. AL = ID code {see below)
CX = 1, reset line 25. AL = [D code (see below)
CX = 2, print character in AL

CX = 3, set cursor to position AL {0-79)

ID codes: O=voice, 1=calc.

OF1H - Screen Output
{also provided by INT 29H)
(see note 3}

Source: RAM BIOS & Application
Input: AL = character
Output: none, all registers preserved.

OFOH - 810 Control Interrupt
{see note 1)

Source: ROM BI(S
Input: AL = SIQ interrupt vector
= Ch B Tx buffer empty
Ch B ext/status int.
Ch B Rx ready
Ch B Special Rx
Ch A Tx buffer empty
10 = Ch A ext/status int.
12 = Ch A Rx ready
14 = Ch A Special Rx
Qutput: none

dMAMNO

I

OEFH - Reserved for use by ACTEX
Redirected if INT 24 error handler present

OEEH - Send Non-specific end-of-interrupt
(EOI) to PIC, or dummy ‘RETI’
sequence to Z80 chips.

Source: Application Hardware Interrupt Handler
Input: none
Qutput: none

3.7/14 Guide to the BIOS

OEOH - GSX-86

Source: Application

input: CX = 0473H — Function code
DS:DX - Parameter Block pointer
Refer to GSX chapter.

Note 7: SS, DS, ES must be preserved, Stack must not be
changed if interrupts are enabled, or a call to the ROM Bi0OS
is to be made.

Note 2: All other registers must be preserved, Stack must
not be changed if interrupts are enabled, or a call to the
ROM BIOS is to be made.

Note 3: Interrupt 29 hex is set up by the RAM BIOS for use
by MS-DOS and can be re-used by other operating systems,
since screen output is already provided by interrupt F1h. The
ROM BIOS only uses interrupt F 1h for screen output and
never interrupt 22h.

Guide to the BIOS 3.71/15

Hardware interrupts

02ZH - Floppy disk controller interrupt (NMI}
50H - Si0 ch B TX buffer empty
52H - SIO ch B external/status

b4H - SIO ch B RX ready

56H - SI0O ch B special RX status
58H - SI0 ch A TX buffer empty
BAH - SIO ch A external status

5CH - S10 ch A RX ready

5EH - SIO ch A special RX status
60H - CTC ch O expansion interrupt
62H - CTC ch 1 R$232 Baud rate
64H - CTC ch 2 sound frequency
66H - CTC ch 3 system clock (20ms)

3.7/716 Guide to the BIOS

Pointers

The ROM BIOS accesses a 1K byte Pointer area located
between address 400H and 7FFH in the RAM. The pointer
area is initialised by the Boot procedure. It contains contains
constants and double word pointers.

The Pointers provide the BIOS and Application with details of
the Operating System as follows:

1. Version number

2, Boot details and diagnostic results
3. Disk drives and their capacities

4. Table pointers and sizes

5. Memory map details

Certain pointers may be changed freely by the Applications,
such as those that point to character Fonts, but others must
NOT be altered.

The Table given below details each pointer, it's size in bytes
and an indication of whether it is freely modifiable. All data
and pointers can of course be referenced by the Application.

Double-word pointers (four bytes) conform to the standard
Intel addressing formats, i.e. the first two bytes are the offset
within the segment and the second two bytes are the
segment address.

An example of using the pointers from Basic:

10 DEF SEG=0
20 FONT=PEEK{&HO7086) +256«PEEK{&HO707)
30 DEF SEG=PEEK(&0708)+258=PEEK(&HO709)

Statement 30 sets the variable FONT to point to the active
character font, and statement 30 sets the current segment
to the segment containing the font.

Guide to the B/IOS 3.1/i7

Address Length Setby Use

(bytes)
400H 1 Boot Boot (PJROM version number
401H 1 Boot Machine type
0O = Apricot & Apricot Xi
1 = Apricot Portable
2 = ApricotF1 & F1le
402H 2 Boot RAM Memory Size
(in paragraphs)
404H 4 Boot Cold/Warm bootstrap mark
(6678H, 1234H)
408H 2 Boot Drive booted from

O00OO0H = Floppy O
000 1H = Floppy 1
O002Z2H = Winchester 1
0O003H = Winchester 2
40AH 4 Boot Pointer to loaded boot disk
header sector
{immediately after Boot only)

40EH 4 Boot Reserved
412H 2 Boot Reserved
414H 1 Boot Winchester type:
0 = No Winchester
3 = b Megabyte RO3561
Winchester
4 = 10 Megabyte RO352
Winchester
5 = 20 Megabyte Winchester
415H 1 Boot Floppy type:
O = 70track SS
1 = 80 track SS
2 =80 track DS
416H 1 Boot Number of Floppy Drives
417H 1 Boot Number of Winchester Drives
418H 4 Boot Pointer to Floppy BPB array Table
41CH 4 Boot Pointer to Winchester
BPB array Table
420H 2 Boot Power-up Diagnostic Results

Test failure number from
boot diagnostic
422H 2 Boot Paragraph address of start of
user code area (for use by
BIOS’s laded from disk).
424H 4 Boot ROM BIOS Stack
Segment/Offset
{for use by interrupt routines)

3.7/78 Guids to the BIOS

Address Length Setiby Use

(bytes)
500H 8 Reserved
508H 8 Reserved
600H 5 Boot Longjump to BIOS

Control Device
610H 112 User Reserved for
MBASIC/GSX interface
700H 4 Boot Pointertointernal
BiOS config table

704H 2 Boot Length of internal
BIOS config table in bytes
706H 4 Boot/
, User Pointer to active character font
70AH 2 Boot/
User Length of active font in bytes
70CH 4 Boot/
User Pointer to master character font
710H 2 Boot/
User Length of master font in bytes
712H 4 Boot/
User Pointer {o active keyboard
tables
716H 2 Boot/
User Length of active keyboard
tables
718H 4 Boot Pointer to internal keyboard
tables
71CH 2 Boot Length of internal keyboard
tables
71EH 4 Boot/ MicroScreen Character Table
User pointer. Not used.
722H 4 Boot Pointer to write only register
copy table
726H 4 Boot Pointer to Ascii colour
screen image
72AH 4 Boot Pointer to Ascii LCD
screen image
780H 4 User Voice software pointer area

Guide fo the BIOS 3.7/7189

Ascii and Bit Screen Image

Two areas of RAM are reserved for the Display. The Apricot
features mixed graphics and text features and this is
achieved by use of a Bit Screen Image.

Manipulation of the Bit image for Scrolling, Hardcopy etc is
inherently slow and cumbersome. Therefore a further image
in the more suitable Ascii form is maintained.

A further area of the RAM contains hardware mapped video
line pointers — one pointer per Pixel line, 256 in total. These
pointers are used for scrolling etc.

The Bit Screen Image and video line pointers are fully
described in the Screen Driver chapter.

RAM BIOS for MS-DOS

The function of the RAM BIOS is to link MS-DQOS to the ROM
BIOS. It does this by passing MS-DOS calls to the Control
Device; i.e. interrupt FC.

Bootable Disks for MS-DOS 2.1 1 include a full generic RAM
BIOS, i.e. it is designed to boot on all Apricots equipped with
a ROM BIOS.

The RAM BIOS will support any machine configuration up to
2 Fioppy Drives and 2 Winchester Drives.

The Fixed Position Files on the Bootable Disk are as follows:-

Start Sector
File (70T /ss) (80T/ds) Length
FONT.SYS (16*16, ODH 12H 12.5K
8+8 and 8% 10)
KEYTAB.SYS 26H 2CH 1K
10.5YS 28H 2EH 7K
MSDO0OS.SYS 36H 3CH 17K

Note that the size of MSDOS.SYS will increase for MS-DOS
3.00 to approximately 28K.

3.7/20 Guide to the BIOS

Disk Label Sector and Configuration
lable

The Disk Label Segtor for Generic Boot disks is situated in
Track O, Sector O on the boot disk (the first physical sector
on the disk), and is 512 bytes long.

it contains both disk and operating system identification,
boot loading information, and the ROM BIOS configuration
table {this must be valid on the boot disk).

The first 80H bytes of the Label Sector contain disk and OS
configuration data. The remainder, i.e. bytes 80H to FFH
contains the configuration data for all other physical devices.

The Pointer Table has an entry at at 40AH which points to
the loaded boot disk header sector image immediately after a
BOOT is performed. This is for Operating system loader and
initialise software only.

The data in the Label Sector is also stored partly in the
Pointer Table and the remainder in the Configuration Table.

A further pointer at 700H points to the internal copy of
configuration parameters {2nd 80H bytes of the
disk header).

Guide to the BIOS 3.7{27

First B8OH bytes, disk & O/ S identification

Offset Reference

Bytes Description

0000 LBLform__vers
0008 LBLop__sys

0008 LBLsw.__prot

000A LBLcopy_prot
000B LBLboot__disk

000C LBLmuiti_region

000D LBLwinchester

O00E |.BLSec__size
0010 LBlsec__track
0012 LBLltracks__side
0016 LBLsides

0017 LBLinterleave
0018 LBLlskew
Q01A LBLboot__locn

O01E LBLboot__size

8
1

—

- BPNR

N BRN=

version of format which
created disk
Operating System:

0 = invalid

1 = MS-DOS
2 = p-System
3=CP/M86

4 = Concurrent CP/M
software write protect
(O = off)
copy protect (O = off}
boot disk type:
0 = non-bootable disk
T = Apricot & X| RAM
BIOS

2 = GENERIC ROM
BIOS

3 = Apricot & XI ROM
BIOS

4 = Apricot Portable
ROM BIOS

5 = Apricot F1 ROM
BIOS

multi-regioned
0 = not mulii-

regioned
< >0 = number of logical
volumes})
Winchester disk

{1 = winchester)
sector size (in bytes)
sectors per track
Tracks per side
Sides:

1 = single

2 = double
interieave factor
skew factor
sector number of boot
image
number of bootstrap
sectors

3.71/22 Guide to the BIOS

Offset Reference Bytes Description

0020 LBLboot__addr 4 bootload address
(dword pointer)

boot start address offset
boot start address

0024 LBLboot__st__off
0026 LBLboot__st__seqg

segment

0028 LBLdata_locn sector number of first
data block

002C LBLgeneration generation number

002E LBLcopy.__count copy count

0030 LBLcopy__max maximum number of
copies

0032 LBLserial..id

O03A LBLpart_.id

0042 LBLcopyright 1
Main Disk Extended BPB image:

serial number
part number
copyright notice

00 MDNNA NN

0050 LBLBPBsctr_sz 2 sector size in bytes

0052 LBLBPBcilu__sz 1 cluster size in sectors

0053 LBLBPBrsvd__sct 2 reserved sectors

0055 LBLBPBn__fats 1 number of FAT's

0056 LBLBPBn__dir_ent 2 number of directory
entries

0058 LBLBPBn__sectors 2 number of sectors

O0bA LBLBPBmedia_.id 1 medialD byte

005B LBLBPBn__fat_sct 2 numberofsectors per FAT

005D LBLBPBdisk_type T type of disk:

0 = 70 track S§

1 = 80 track S5

2 = 80 track DS

3 = bM winchester

4 = 10M winchester

5 = 20M winchester
OO5E LBLBPBstart__sct 2 Logical sector for start

of volume

End of BPB image.

0060 LBLfont_name 16 name of default
FONT.SYS

0070 LBLkeys_name 16 name of default
KEYTAB.SYS

Guide to the BIOS 3.71/23

Configuration constants definition area

{Base address = Label Sector base + 80H)
Note: Run-time ROM BIOS pointer at 700H points to BIOS

copy of these configuration tables.

Offset Reference

Bytes Description

Systems unit:

0080 CNF_ver__Io
0081 CNF.__ver__hi
0082 CNF_diagflag
0083 CNF__Ist__dev

0084 CNF_Bell_vol

008b CNF_cache__on
0086 CNF__graphics_on
0087 CNF_DOS_len
0088 CNF_FONT__len
0089 CNF__KEYS__len

O08A CNF_DOS__sec
008C CNF__FONT__sec

O08E CNF.__KEYS_sec

—

2
2
2

Disk BIOS minor version
number
Disk BIOS major version
number
Global diagnostics flag
{0 = off)
PRN: device

0 = parallel

1 = serial
bell volume

0 = full

15 = off)

Reserved
Reserved
Length of DOS in sectors
Length of FONT in sectors
Length of KEY table in
sectors
Start sector of DOS image
Start sector of 3 Fonts
{12.5K)
Start sector of KEY table
image

Note: The above six fields are private to the MS-DOS
BIOS: other O/S's may use these for their own
private uses. f FONT_sec or KEYS _sec are set to
zero then the respective tables are not loaded, and

BIOS uses the ROM versions.

3.1/24 Guide to the BIOS

Offset Reference Bytes Description

Keyboard:
0090 CNF__Click__vol 1 Key click volume
0 = full
15 = off
0081 CNF_rept__en 1 Auto-repeat master enable
0 = off
1=on
0092 CNF_rept__dly 1 Auto-repeat lead-in
‘ (not used)
0093 CNF__rept_—int 1 Auto-repeat interval
{not used)
0094 CNF._Mscrn__mode 1 Microscreen mode
{not used)
0095 11 spare
Screen:
00AQ CNF _line_mode 1 O = 256line
1 = 200 line display
00A1 CNF__line_ width 1 0=280
1 = 40 column display
00A2 CNF_.image_.off 1 O = Screen Image on
1 = image off
00A3 13 spare

Guide to the BIOS 3.7/25

Offset Reference

Bytes Description

Serial communications:
Q00BO CNF__Tx__brate

00B1

00B2
00B3
00B4

00B5

OOB6

OOB7

OOB8

00B9S
Q0OBA

CNF_Rx__brate

CNF _Tx__bits
CNF__Rx__bits
CNF _stop__bits

CNF _parity__chk

CNF _parity__typ

CNF _Tx_xonxoff

CNF _Rx_xon/xoff

CNF _xon__char
CNF _xoff_char

1

Tx baud rate
1=860,2=75,3=110
4=134.5,5 = 150,
6 = 300, 7 = 600,

8 = 1200, 9 = 1800
10 =2400, 11 = 3600,
12 = 4800, 13 = 7200,
14 = 9600,

15 = 19200

Rx baud rate
1=5060,2=753=110
4 =134.5,5= 150,
6 = 300, 7 = 600,

8 =1200,9 = 1800
10 = 2400, 11 = 3600,
12 =4800, 13 = 7200,
14 = 8600,

15 = 19200

Tx bits per char, (6 to 8)

Rx bits per char. (5 to 8)

stop bits
T=1

2=156
3=2
parity check
0 = no check
1 = check
parity type
0 = none
= odd
2 = even
3 = mark
4 = space

transmit xon/xoff protocol
0 = off
1= on
receive xon/xoff protocol
0 = off
= on
XON character code
XOFF character code

3.7/26 Guide to the B10OS

Offset Reference Bytes Description
O0OBB CNF_Rx_X_limit 2 XON/XOFF receive

buffer limit
O0OBD CNF_dtr__dsr 1 DTR/DSR protocol
) 0 = off
1 =on
OOBE CNF__cts_.rts 1 CTS/RTS protocol
0 = off
1 =on
O0BF CNF_CR__.null 1 number of nulls to send
after CR
00CO CNF_FF_nuli 1 nulls {x10) to send after FF
O0C1 CNF_s_.cr__if 1 Auto LF after CR
0 = off
1 = on
00C2 CNF__s_ bioserr 1 BIOS error report
O = off
1 = on
00C3 13 spare
Parallel communications:
Q00DO CNF_p__cr__If 1 auto LF after CR
0 = off
1=o0n
00D1 CNF_select 1 select line support
0 = off
1= on
00D2 CNF_pe 1 paper empty support
0 = off
1 =on
00D3 CNF__fault 1 fault line support
0 = off
1=on
00D4 CNF__p_bioserr 1 BIOS error report
O = off
1=o0n
CODb 11 spare

Guide to the BIOS 3.7/27

Offset Reference

Bytes Description

Keyboard:

Winchester:

OQEO
O0OEE CNF_.wini_park

OOEF CNF_wini__form

RAM disk:
O0FO

14
1

1

16

spare

parking enable flag
O0=on
nz = off

format protection
O = off
nz = on

spare

Non-dedicated area of label sector starting at base
+ 100H; used for Winchester disk bad block tables and

Multi-volume BPB's.
0100 WINbad__sect

0140 WINvol_bpb1
0150 WiNvol_bpb?2
0160 WINvol_bpb3
0170 WIiNvol _bpb4
0180 WINvol_bpbb
0190 WINvol_bpb6
01A0 WIiNvol_bph7
01BO WIiNvol_bpb8
01COo

O1FF

64

16
16
16
16
16
16
16
16
63

1

Up to 32 words giving
logical sector numbers of
bad biocks on the disk

Extended BPB volume 1
volume 2
volume 3
volume 4
volume b
volume 6
volume 7
volume 8

spare

CP/M sides flag

(O = single sided)

3.7/28 Guideio the BIOS

Contents

Dverview

General application
Introduction
Low level Control device access
High level Control device access
Errors

Specific application
Device Numbers

Screen
Keyboard
Serial 1O
Parallel 1/O
Mouse
Clock
Sound
Floppy disk
Winchester

Controf Device 3.2[7

Overview

The Control Device is a software driver which routes
requests for 1/0 to the individual hardware drivers in the
ROM BI0OS. The philosophy behind this device is to provide a
generic interface for the Apricot family.

Application software written using the Control Device will
thus be compatible with future generations of the Apricot
family.

Application software which detours the Control Device in
order 10 access the hardware directly cannot assume
compatability with future releases within the family. This
practice is not to be condoned and should only be used in the
last resort.

The Control Device is implemented fully on the F1 and
Portable. At present only a subset is available on the pc and
Xi but future versions will be brought into line with the
inclusion of a full implementation of the generic Control
Device.

Two methods of invoking the Control Device are provided to
facilitate the needs of low and high level languages. These
are described in detail in the next section.

An example of the low level requirement can be seen in the
RAM BIOS which serves MS-DOS with all I/O functions. The
RAM BIOS is implemented at low level machine code and it
routes all I/0 via the Control Device. High level languages
such as BASIC may also make use of the Apricot features but
do not have the same facilities to invoke the Control Device.

The following sections provide a blueprint for utilising the
Control Device, a description of each of the hardware drivers
together with examples of how to access them from a high
level language.

Remember that the Control Device is a generic interface and
that the inclusion of drivers in the following sections does
not neccessarily imply that the hardware is available on a
specific machine. The Microscreen is not available on the

Portable for example but its driver is naturally a part of the
generic family. Such occurences are noted and a description
of the effect of calling a non-existant hardware module is
included.

3.2/2 Conirol Device

General application

Introduction

This section describes how to invoke the Control Device
from low and high level languages.

The two methods each require the following arguments to be
passed {o and from the individual routines:

Entry:
P1 = Device number
P2 = Command
P3 = Data or Data pointer segment
P4 = Data or Data pointer offset

Exit:
PX = Data/Status

Reference 1o individual routines will determine the format of
the parameters.

The first method is available at machine code tevel and is
invoked by executing a software interrupt of type FC hex
with the registers set up with the entry parameters.

The alternative method is available to facilitate languages
which are not able to generate a software interrupt or indeed
to access the processor registers.

This involves calling a fixed location in the Pointer area
(0600 hex) which contains a “Long jump” to the Control
Device interface routine with the parameters on the Stack. In
Basic, for example, this is achieved with a CALL Statement.

Note that interpretive BASIC is used in this chapter and
others purely as a universal quick reference to the use of
facilities. It is not really a suitable language for accessing the
Control Device and in certain cases still requires machine
code subroutines to succeed. It is recognised that use of the
Control Device will fall mainly into the category of the
professional Application package developer using assembler,
C, PASCAL, Compiled BASIC, etc.

Control Device 3.2/3

Low level Control Device access

Entry:
Set the internal registers with the following “word” values:
BX = Device number (P 1)
CX = Command (P2}
DX = Data or Data ptr segment (P3)
SI = Data or Data ptr offset (P4)

Call:
Execute software interrupt type FC hex

Exit:
AX = Data or Status (PX)

All routines in the Control Device preserve the entry
registers. The AX register will not normally be preserved.

The above parameters and result are all “word” values. To
facilitate functions which require additional data the DX
register is combined with the Sl register to provide a
Segment:Offset pointer.

DX:Sl = Segment:Offset

In this case the return data/status will normally be at the
location pointed to by DX:SI.

The Device numbers are detailed in later sections. So too are
the command values together with detail which will
determine which routines require the “Data pointer’” option
and how each routine returns Data or Status.

3.2/4 Conirof Device

High level Control Device access

Entry:
Set the following “word” pointers on the stack:
Device number (P 1)
Command {(P2)
Data (P3)
Result (P4)

Call:

Call the Control Device via the “Long Jump” in the Pointer
area. Absolute address 00600 hex.

Exit:
Data or Status (P4} or at (P3:P4)

The interface for the Control Device expects the stack to
contain 4 word pointers to each of the entry parameters
given above. The order in which the parameters are to be
pushed onto the stack is Device, Command, Data and finally
Result,

Normally, as in BASIC for example, the language processor
will be responsible for setting up the stack with the relevant
pointers. The applications program must simply ensure that
the parameters are supplied in correct order and number.

The DX:SI Data pointer facility is also available in High level
access by combining the two pointers P3:P4 to give
Segment:Offset respectively or Double word data.

It is of particular importance to note that pointers within
most language processors, and once again BASIC is a good
example, are relative to the processor’'s own Data Segment.
There is usually no direct method for the Application to
obtain the value of the Segment. In such cases the
Application must resort to machine code subroutines to
ensure a correct interface. Refer to the Appendix on
Language Interfaces for details of how to do this and further
information regarding interfaces.

Apart from these differences, the Control Device is accessed
and reacts in the same way whether at Low or High level.

Control Device 3.2/5

High level Control device access

Accessing the Conirol Device from BASIC

The following sections provide examples of how to use the
Control Device from BASIC. Here we can study the general
concept of implementing /0O functions from BASIC.

10 REM - Concept of programming Control Device
20 DEF SEG=&H60 "Set current segment to 60 hex

3010=0 "Painter to offset 0 within segment
40 DEV%=1 ‘Device number 1

50 COM%=0 ‘Command is 0 i.e. initialise

60 DAT%=0 'Data

J0RET%=0 '‘Data/Status return

100 CALL 10{DEV%,COM%,DAT%, RET%)
The CALL will vector to absolute address 00800 hex.
The stack will contain the following:

Word pointers: Device number (DEV%)i.e. P1
Command (COM%) P2
Data (DAT%) P3
Return data (RET%) P4

“pushed” in the order given followed by a “Double word”
return address.

The Control Device will validate the parameters and route
the 1/0 request to the specified routine.

Execution of the command will normally result in

Data/Status being returned to the application program via
the RET% variable.

200 SEG%=&HC000 'Segment pointer to a buffer
210 OFF%=0 ‘Offset within buffer

220 DEV%=10:COM%=3

250 CALL [0{DEV%,COM%,SEG%,0FF%)

The example follows on to show the alternative entry
parameters where the SEG% (P3) & OFF% (P4) variables
represent a double word Segment:Qffset pointer to the data.

Any return data or status is returned relative to the data
pointer.

Note: The references to device numbers, commands etc,
given in the examples are purely arbitrary. The exact
specification for each individual driver is described below.

3.2/6 Controf Device

Errors

On exit from the Control Device, PX wili be set to a value to

indicate the status or data returned from the individual

command. Where data is returned, details are given with

each call.

Where a status is returned then it will be one of the following

unless otherwise stated:

0000 - Device present and on-line
8000 - Write protect

8001 - Unknown unit

8002 - Not ready

8003 - Unknown command

8004 - CRC error

8005 - Bad request length

8006 - Seek error

8007 - Unknown media

8008 - Sector not found

8009 - Printer out of paper

800A - Write fault

8008 - Read fauit

800C - General failure

FFFF - Device error/invalid device or command

In certain cases the 0200 hex bit is set to indicate that the

device is busy.

Controf Device

3217

opecific application

This section details each individual hardware driver and how
it is accessible via the Control Device.

The section is limited to the definition of each call. A full
description of the driver and examples of how to use its
functions from a high level language {(and implicitly a low
level language) are given in the following chapters on the
Drivers.

The Device number is given with the heading of each driver
and not included in the definition to avoid repetition. it must
be stressed however that this parameter MUST be supplied
with every call to the Control device.

For ease of identification and to provide a common approach
to each method of invoking the Control Device, each
parameter will be given an identifier as follows:

P1 - Device number

P2 -Command

P3 - Dataor Data Pointer Segment

P4 - Data or Data Pointer Offset

PX - Dataor Status

PTR - Pointer {Double word Segment: Offset)

In addition to the parameters above the following identifiers
have a common meaning in the driver sections:

SEG - Segment
OFF - Offset
SET - Current setting.

A number of commands are of the format ‘Get/Set
an attribute’ and successful execution results in the
PX parameter being returned SET (i.e. the current
setting). If P3 is invalid then the setting, which s
returned in PX, remains unchanged.

Note: Invalid P3 settings may be conveniently used to
obtain the current setting.

3.2/8 Control Device

Certain calls in the Generic Control Device are not
available on all machines within the family. Availability is
denoted in the M/C (machine column):

A is available on Apricot or Xi
P is available on Portable
F is available on F 1

Device numhers

The Device numbers are:

ASCIl Hex Device
1 31 Screen
2 32 Keyboard
3 33 Microscreen (only on Apricot PC/Xi)
4 34 Seriall/O
5 35 Parallel{/0O
6 36 Mouse
7 37 Clock
8 38 Sound
9 39 Floppy Disk
@ 40 Winchester
A 41 Modem {notimplemented in Control Device}
B 42 Cache/Graphics/IBM {only on Apricot PC/Xi}

Cantrof Device 3.2/8

Sereen-P1 =31 hex

M/C P2 Function F3 P4 PX Commaent
PFA 0QOO Initialise driver 0000 OK
0001 No driver

A 0001 Get/Set Text mode 0000 SET noate 1
Get/Set Graphics mode 0001 SET

A 0002 Get/Setdisplay on (Blo810] SET note2
Get/Set display off o0t SET

0003 No-op
PF 0004 Print character ‘c¢’ 0Gcc note 3
PF 0005 Print string SEG OFF note 4

PF 00OB Reserved
PF 0CO7 Reserved
PF 0008 Reserved
PF 0009 Reserved
PF QOO0A Reserved
PF QOO0B Reserved
PF 0GOC Reserved
PF GQOD Reserved

PF DOOQE Dutput char, rrce FORMX note 5
to Default screen,

PF OCOF Update Screen Bit Image from note 5/6
Default character Image

Key: rrcc rr = SCreen row
cc = screen column

3.2/10 Control Device

Screen driver notes
1. Oniy available on pc/Xi where text mode is a feature.
2. Switch Display OFF/QN. Suitable for pseudo rapkd Display changes.

3. The use of software Interrupt F1 hex is faster, This is a logical print, i.e. characters
=< 20 hex are obheyed.

4. SEG:0QFF is a pointer to a 3 word table:

Word O - Number of characters
Ward 1 - Offset of string
Word 2 - Segment of siring

5. FORMX - A word to represent the current Default Screen, Three formats are
possible:

Apricot Compatible 80 column:
Lo byte - 8 bit ASCI data
Hibyte- ri us xxxx
}—i__ strikethrough
underline
intensity

reverse video

Apricot 40 column:
Lo byte : 8 it ASCIl data

Hibyte : r x x x X x X X

|__._._ reverse video

Colour:

tobyte : 8hit ASClldata

Hitwte whbhofif

_.. foreground

background

Refer to Screen Driver chapter for a definition of Apricot Campatible mode,

&. This is a rapid update of the Screen Bit image from the Default Screen Character
image. tis used by the Screen Driver following such functions as scrolling.

Controf Device

3.2/11

Keyhoard - P1 = 32 hex

M/CP2 Function P3 P4 PX Comment
PFA QOO0 Initialise 0000 0K
0001 no driver
PFA 0001 Disable auto rpt 0000 SET
Enable auta rpt 00C1 SET
A 0002 Set auto rpt lead-in delay 00xx SET
to xx 20ms intervals
A 0003 Set auto rpt rate to xx 20 ms Q0xx SET
PFA 0004 Set Fall-through mode | OFF 0000 SET note 1
ON 0001 SET note2
PFA 0005 Flush queue Q000 note 3
PFA CQOO06 Reset CTRL/SHIFT status &
clear down-code buffer 0000 note 4
PFA 00Q7 Get/Set HELP ignore mode: OFF 0000 SET
ON 0001 SET
PFA 0008 Place data xx in queus 00xx 0000 CK
FFFF Fult/BELL
PFA 0009 Sound BELL 0000
PFA 0QQ0DA Heturn Cueue byte count C0ux xx = number
PF 0QO0O0B Get byte from Queue O0xx xx = byte
Wait if queue empty
PF 000C Look-ahead. Get Next byte, O0xx xx = byte
tFFF empty
PF 000D Add string to queue SEG OFF 0000 OK-note b
FFFF Full/BELL
PF QOQE Get string from gueue SEG QFF 0000 note 6
PF (QQ00OF Get/Set Status 2800 00xx note7

3.2/12 Control Device

Keyboard notes
1. Down-codes are translated and then put in the queue.
. Down-codes are not translated. They are placed in the queue "raw”.

. Remove all data from gqueue.

W N

. Set CTRL and SHIFT to not affective and clear down caodes in queue. Use after
Keyboard Table change,

E. SEG:0OFF is a pointer to a 3 ward packet consisting:

WORD = No of bytes in string {max 80 - no check)
DWORD = Seg:Off pointer {o string

If there is not enough room for the complete string in the buffer then it is rejected, the
belt is sounded and the status is set to FFFF hex.

6. As b except for remarks on overflow. The byte count in this case must be pre-specified
and the call will not return until the specified Key count.

7. The status of the keyboard is configured in a byte as follows:

HEEEI RN

t HELP ignare
STOP mode
CAL.C mode
SHIFT LOCK
RAW mode
VQICE LED

LOCK
CAPS LOCK

where @ = off 1 = on

The high byte of P3 {aa) is logically AND'ed with the status, i.e. gets the current status,
whereas the low byte (0o) is logically OR’ed with the status and hence sets it.

e.g P3 = FFOOH wvill return status only
P3 = FDO2H will set STOP on

Control Device 3.2/13

Serial I/0-P1 =34 hex

M/CP2 Function P3 P4 PX Comment
PEA 00QQ Initialise driver D000
PFA 0001 Xmit character xx Q0xx Q000 QK
FFFF Fail
PFA 0002 Rcevecharacter FFFF char avail,
D0xx OK
PFA 0003 Update SIO settings 0000 note 1
PFA 0004 Get/Set Xmitbaud rate{x = 1-F) 000x SET note 2
PFA D005 Get/Set Rcve baudrate{x = 1-F) 000x 5ET note 2
PFA 0006 Get/Set Xmit bits/char. {x = 5-8) 000x SET note 3
PFA QQ07 Get/Set Rovebits/char. {x = 5-8) 000x SET note3
PEA Q008 Get/Set Stop bitg/char. (x = 1-3) 000x SET noted
PFA 0009 Get/Set Parity type. (x = Q- 2) 000x SET noteb
PEA Q00A Get/Set Xmit XON/XQOFF QCOx SET 0 = disahle
1 = enable
PFA QO0B Get/Set Rove XON/XOFF 000x SET 0 = disable
1 = gnahle
PFA 0QQ00C Get/Set RTS {Ready to send) 000 SET O = reset
= get
BFA Q0QD Get/Set DTR {Data Term ready} 000x SET O = reset
1 = set
PFA QO0OE Get/Set Xmit enable 000x SET O = disable
1 = enahte
PFA Q0OF Get/Set Rcve enable 000k SET QO = disable
1 = enable
note 6
PFA 0010 Get CTS {Ciear to send) status 0000 Reset
Q001 Set
PFA 0011 Get DCD {Data Carr. Detect} 0000 Resst
0001 Set
PFA 0012 Get DSR (Data Set Ready) status 0000 Reset
Q0001 Set
PFA 0013 Get/Set xx nulls after CR COxx SET note?
PFA 0014 Get/Set xx nulls after FF Q0xx SET note?
PFA 0015 Get/Set auto LF after CR 000x SET O = disable
1 = enable

3.2/74 Control Device

Serial I} O notes

1.

Al calls to configure the S0 are not activated until this command is executed.
Specifically these calls are 0004 through 0009, 0018 and 0019,

.P3issettoavalue {x)in the range 1 - F hex corresponding to an entry in the table

below:

Raud Rate

50
75
110
134.5
150
300
600
1200
1800
2400
3600
4800
7200
9600
19200

e
&
£
o

MTMOODPOONORO BN =

. P3is set to a value (x) in the range 5 - B to denote the number of data bits per

character.

. P3is setto a value (x) in the range 1- 3 corresponding to an entry in the table

below:

1-1 stop bit
2 - 1.5 stop hits
3-2 stopbis

. P3is setto a value (x} in the range C - 2 corresponding to a parity type as given in

the table below:

G- none
1 - odd
2 -even

. These calls directly enable/disable the SI0. Care must be taken to ensure that the

510 has completed ail outstanding communications. This can only be acieved by
either manitoring the Read Registers directly and iooking at the “"ALL SENT” flag or
by use of Call 24 hex which does not return O until “ALL SENT”.

. P3 is set to a value {(xx) in the range { to FF hex. This command is of use in

conjunction with transmission to printer devices. It generates a series of null
characters (10 times the xx number specified) following a CR or FF as
designated.

Conirof Device 3.2/715

Serial 1/0 - P1 = 34 hex {continued)

PX Comment

M/C P2 Function P2 P4
PFA 0018 Enable serial mouse 0000 note 8
PFA 0017 Disable serial Mouse 0000 note 8
PFA 0018 Get/Set RTS/CTS protocal 000x SET O = disable
1 = enable
2 = auto-enahle
note 9
PFA 0019 Get/Set DTR/DSR protocol D00x SET note 10
PA QO01A Get/Set External S10 control 000« SET note 11
PF C01B Reve Queue Look-ahead FFFF none
Q0xx Rcve char.
PF Q0O1C Flush Xmit Queue 0000 note 12
P+ 001D Flush Rcve Queue 0000 note 12
PF OQO0O1E Get Rove Char. Oex note 13
Status-reset error.F
PF GO1F Xmit string SEG OFF Q000 OK
xxxX Errorcode
Note 14
PF 0020 Rcve string SEG OFF 0000 Note 14
PF 0021 Get/Set Rcve Queue length KXXX SET Note 15
FF 0022 Get/Set Xmit Queue length XXKK SET Note 15
PF D023 Beturn count chars in RCVE Queue NXXK
PF D024 Return count chars in XMIT Queve HWXKX

3.2/716 Control Device

Serial 1/ O notes fcontinued)

8. When the serial mouse is enahled the SIO interrupt handler vectors all RX data to
the Serial Mause Interrupt (OFA hex) handler. Controlis returned to the RS-222
when the serial mouse is disabled.

9. RTS/CTS and DTR/DSR protocols are supported by the SI0 directly when
Auto-enables mode is invoked. In Auto-enahies mode the CTS line serves a
specific function, i.e. no transmission takes place until CTS goeslow. I CTS is
used for any other purpose then Aute-enable should not be invaked.

10. Refer to note 2. In addition both enable/disable in this call de-activates
Auto-enable in both protocols.

11. This command allows the applicatien to switch the SI0 between BIOS control and
user contral. The 510 under BIAS, for example, is anly in ASYNC - in order to
program the SI0 in SYNC mode the user must take control of the SIQ and
re-program it. The entry parameter (P3) selects one of the following:

¢ - 510 under BIOS control
1 - S1Q under interrupt control {FO hex)

In the latter case the interrupt routine FO hex must handle all Tx, Rx and errors
related to the SIQ.

The return cell (PX) gives details of the SIO:
#X low byte - Base SI10 port address
The offsets from the base are:

[base + O] = Ch A data
[base = 2] = Ch A status
[base + 4] = Ch B data
[base ~ 8] = Ch B status

PX high byte - has one of 2 values i.e.

O =R5-2320onChaA
1=R52320onChB

12. These calls should be invoked if spuricus data is transmited/received.

13. Returps status in PX low byte as per 510 Read Register 1 {refer to Hardware
section).
This is a 'running” error status on all RX characters since the {ast status call. The
call clears the status.
7 6 5 4 3 2 1 0

olrjolrlo]olo]o]

l Parity

Overrun

Framing

The status is used to detect errors in BX Blocks of characters.
Note that all other bits are clear. The call cannat be used to monitor "ALL SENT'.

14. Parameters P3 & P4 form an address pointer SEG:QFF o a 3 word packet of the
format:

WORD - number of bytes in string
DWORD - pointer to string (SEG:OFF)

15. Set the Queue lengths to a valus xxxx in the range 1 - 512 bytes.

Control Device 3.2]77

Parallel I/0 - P1 = 35 hex

M/C P2 Function P2 P4 PX Comment

FFA Q000 Initialise 0000

PFA Q001 Return available buffer space. Xxxx note 1

PA 0002 Get/Set FAULT line status detect. 000x SET O = disable
1 = enable
note 2

PA 0003 Get/Set SELECT line status detect. 000 SET 0 = disable
1 = enable

PA 0004 Get/Set PAPER OUT status detect. D00x SET 0O = disable
1 = enable

PFA Q005 Get/Set Auto LF after CR enable 000x SET 0O = disable
1 = enable

PFA 0006 Get/Set Serial/Parallel Device 000x SET 0O = Parallel
1 = Serial
note 3

PFA 0007 Print character on output device, 00cc xxXx ©c = character
PX = status
note 4

FF 0QC8 Flush printer output buffer 0000 note 5

PF 0009 Transmit string SEG OFF xxxx PX = status
note 5

PF OO00A Return output status 0000 OK

xxxx Printer busy

Paper out

3.2[18 Control Device

Paraflel I/ O notes

1. The buffer has a capacity of 2k bytes. If the value xxxocin PX is fess than 3 then
regard as full.

2. Detection of the 3 error tines:

FAULT
SELECT
PAPER ERRCR

may be individually enabled or disabled.

3. By default the BIQS is vectored to the parallel port. This taggle switch allows
re-direction to the Serial port. In doing so the parallel printer buffer (2 Kbytes) is
then used for Serial Output.

Serial autput is mixed with parallef output.

4. If the character is received by the current output suppart driver and successfully
output the PX is returned zero. Otherwise PX contains an error code.

5. Hesets pointers to beginning of buffer. Ensure that printing has been completed
under normal circumstances by querying the number of free bytes in the buffer.

6. P3:P4 form a pointer to a 3 word packet as follows:

WORD - byte count
DWORD - string pointer

7. If the printer is busy or Paper out detected then PX will be set to an error code.

Controf Device 3.2]/79

Mouse - P1 = 36 hex

The Mouse is not directly supported by the Contraol Device. It is a loadable
Device driver.

However calls to the Control Device are provided to enable and disable the
Serial Mouse and these can be found in the section Serial 1/0.

3.2/20 Control Device

Clock - P1 = 37 hex

PX Comment

M/C P2 Function P3 P4
FPF 00OO0 Initialise-reset time to

0:00:00 1-1-80
PF 0001 Set Date/Time SEG OFF

P3:P4 points to data block:
WORD - Days since 1-1-80
BYTE - Minutes
BYTE -Hours
BYTE -Hundredths of secs.
BYTE -Seconds

PF 0002 Get Date/Time SEG OFF

P3.P4 points to data block
as cammand 2.

0000

0co0

0000

Control Device 3.2[27

Sound - P1=38 hex

M/C P2 Function P3 P4 PX Comment
PFA QOO0 Initialise 0oo0

PFA ©C0D1 Get/Set Key click volumae 000x SET note 1
PFA CO02 Get/Set Bell volume 000x SET note 1
PA 0003 Get/Set Channel 2 volume 000x SET note 1
PA 0004 Get/Set Channel 3 volume 000x SET note 1
PA Q005 Get/Set Channel 2 frequency Oxxx SET note 2
PA 0008 Get/Set Channel 3 frequency Oxxx SET note 2
PFA QD07 Get/Set Bell frequency Oxxx SET note2
PFA Q008 Get/Set Bell duration O0xx SET note3
PF 0009 Sound Bell 0000

PF 000A Sound Click 0c00

3.2/22 Control Device

Sound notes

1. The value of x determines the volume within a scale of D to 15 where 0 =
maximum and 15 = minimum {figures in decimal).

2. The value of xxx determines the frequency within a scale of O to 1023 decimal
where 0 = maximum and 1023 is minimum.

3. The value of xx determines the duration of the Bell sound in multiples of 20 ms.
The value of xx is in the range 0 to 25b decimal.

Conirol Devica 3.21/23

Floppy disk - P1 = 39 hex

M/C P2 Function P3 P4 PX Comment
PFA QOQO Initialise driver xxxx note 1
PFA QQO1T Set Drive number 000x FFFF Invalid drive
SET 0O =driveD
1 = drive 1
PFA 0002 Set segment address of Track SEG 000 note 2
Image for format
PEA DQO03 Set offset address of Track OFF 0000 note 2
Image for format
PFA 0004 Format floppy disk 000 0000 OK
xxxx Error status
x (0= 70ss/{1 = 80s5/2 = 80ds) note 1
PFA 0005 Return status of disk x 000x »xxx nofe3
PFA DCOG Set disk x status to 000x 0000 QK
swapped FFFF invalid drive
PFA QOQ7 Return disk type in drive x 000x 0000 70track S8

€001 80 track 5§
0002 8G track DS

notes 1/5
PF 000B Return drive type of D00x 0000 70 track 55
drive x G001 80 track SS
0002 801track DS
note 1/5
PF 0008 Check if disk swapped 000x 0000 not swapped
in drive x 0001 swapped
0002 no disk
note 4
PF QQOO0A Get BPB (do this whenever SEG OFF xxxx PX = Status
disk is swapped) note &
PF 0O00DB Read/Write/Verify/ SEG OFF xxxx PX = Status
Write + Verify note 7
PF QO0C Return status of drive x C00x xxxx Status
FFFF Invalid
note 8

3.2/24 Control Device

Floppy disk notes
1. Status - Refer to the Errors section above for a list of errors and status seitings.
2. Track image is contreller dependant. Refer to Hardware section.

3. Apricat Compatible version will - not be supported in future releases. Returns the
status register of the device. Refer to the hardware saction.

4. This command clears the “swapped” flag! IMPORTANT - refer to the Disk Driver
chapier Applications Interest section.

. If the unit is not identifiable then the status returned is 80G 1 hex.

4]

6. Whenaver a disk has been swapped then this call should be executed. The P3:P4
parameters sepcify a Segment:Offset peinter to a 3 word packet:

WQCRD - Drive number (Cor 1)
DWQRD - Pointer to a 512 byte scratch area

The status PX wili be zere if the command was executed correctly otherwise refer
to the section on Errors above for detait. IMPORTANT - refer to the Disk Driver
chapter Applications Interest section.

7. The P3:P4 parameters form a pointer to a hlock of 6 words which has the
following format:

WORD - Drive number (Q or 1}
WORD - Command

O = READ
1 =WRITE
2 = VERIFY

3 = WRITE with VERIFY
WORD - Address of first logical sector
WORD - Number of sectors to transfer
DWORD - Buffer address (not needed for Verify}

The number of sectors field is set to the number of sectors actually transferred.

The status PX will be zero for a successful operation otherwise refer to section 2.4
Errors for detail.

8. THIS CALL SUCCEEDS CALL 0005. It sheuld be used in preference to it! Statusis
as far CALL QD05 - refer to Hardware section.

Control Device 3.2/25

Winchester - P1 = 40 hex

M/CP2 Function P2 P4 PX Comment
PF 0ODOO Initialise drivers xxxx Note 1
PF 0001 Set Disk x status to swapped 000x 0000 OK
FFFF Invalid drive
note 2
PF GQ02 Return drive type of drive x Q00x G00G 5 megabyte
Q001 10 megabyte
0002 20 megabyte
note 3
PF Q003 Check if drive x disk swapped Q00X 0000 Mot swapped
0CQ1 Disc swapped
0002 Mo disk
note 2
PF 0004 Get BPB {do this whenever disk SEG OFF xxxx PX = Status
is swapped) note 4
PF QODL Read/VWrite/Verify/Write + Verify SEG OFF xxxx PX = Status

note &

3.2/28 Control Device

Winchester notes
1. Status - Refer to the section on Errors for a list of errors and status settings.

2. The “swapped” status on Winchester is used te indicate a change in state, e.g. the
Winchester has been formatted.

3. i the unit is not identifiable then the status returned is 8001 hex,

4. Whenever a disk has been swapped then this call should be executed. The P3:P4
parameters sepcify a Segment:Offset pointer ta a 3 word packet:

WORD - Drive number {0 or 1}
DWORD - Pointer to a 512 byte scratch area

The status PX will be zero if the command was executed correctly otherwise refer
to section on Errors for details. IMPORTANT - refer to the Disk Driver chapter
section Applications Interest,

5. The P3:P4 parameters form a pointer to an a block of 6 words which has the
following format;

WORD - Drive number {Oor 1)
WORD - Command

O = READ
1 =WRITE
2 = VERIFY

3 = WRITE with VERIFY
WORD - Address of first logical sector
WORD - Number of sectors to transfer
DWORD - Buffer address {not needed for Verify)

The number of sectors field is set to the number of sectors actually transferred.

The status PX wili be zero for a successful operation otherwise refer to section on
Errors for detail.

Controf Device 3.2{27

Contents

Overview
Application interest

Screen images

Using ESCape sequences
Screen environment

Apricot compatible mode

Colour

ANSI ESCape sequences
Windows and Cursor addressing
Fonts

Ascii control codes

ESCape Sequence Table

Systems interest

Screen Bit Image
Character attributes
40 Column mode
Scrolling
Configuration table

Screen Driver 3.3/ 7

Overview

The Apricot F1 supports either monochrome or colour
Displays. '

The Screen driver provides the following Display
environments:

1. Apricot Compatibility in monochrome, or
2. 4 Colour Display

The hardware provides for 16 colours but this however limits
the screen size to a maximum of 40 columns. The Screen
driver limits the choice of colours to 4 from 16 to provide an
80 column by 25 row environment.

The Hardware section of this manual provides a complete
description of the Screen RAM. Applications wishing o
implement features currently outside the support of the
BIOS, such as 16 colour, should reference this section.

The Screen driver provides a Generic interface for
applications through the Control Device and the use of
ESCape sequences.

Apricot compatibility is provided in monochrome only. The
character attributes supported are Reverse, Strikethrough,
Underline and Intensity.

The Screen environment, apart from the features mentioned
above, also provides 2 further features to cater for the
market. They are:

1. 40 or 80 column mode

2. 200 or 256 line mode

The 40 column mode is designed to support TV screens in
the environments detailed above. Alternatively, the
Application itself can provide the facilities for full 16 colour
40 column output, if required.

The 256/200 line mode provides for 50/60 Hz electrical
standards. The Screen driver supports this feature by using
different size fonts.

3.3/2 Screen Driver

Other features available in the Screen Driver provide the
Application with complete Display control. The principal
ones are tabled below:

A comprehensive set of ESCape sequences including a
subset of the ANSI standards.

A 16 Colour programmable palette, with the Driver
provides support for the following:

1. Monochrome {2 colours from 16}
2. Colour (4 colours from 16)

Foreground, Background character and Screen base
Colour selection.

Partial Windows.
Hard copy.

WP primitives e.g. L & R scrolling, Multi character
insertion, etc.

Switchable character Fonts. Two Fonts are provided as
standard to cater for the line modes outlined above.
Applications may use their own character Fonts by loading
them and designating them active.

Finally, the Apricot F 1 features mixed text and graphics by
utilising a Bit oriented Screen RAM. For this reason the
Screen driver uses a separate character Image in the
memory as described in the section below.

The following sections detail the above features and provide
examples to assist in explanation.

Screen Driver 3.3/3

Applications interest

Screen images

The Display has an area reserved in memory called an
“Image” screen. The location of the Image can be found from
an entry in the Pointer table.

The image consists of a “word"” for every location on the
screen. Each one contains the Ascii value of the character
together with its attributes.

The attributes available vary according to whether the
Screen Driver is in Apricot compatible monochrome mode or
in colour. Later sections detail these attributes.

The image is used mainly to support hardcopy screen dumps
and “return of the character at the current cursor position”,

The real screen RAM is in another location and contains a bit
image for each character. In order to distinguish between
the two images the real screen RAM is termed the “Bit
Image” whereas the character image is termed the “Screen
Image”.

The Bit Image is generated using the active Font table. This is
discussed further under Systems interest.

When requests are made to output data to the screen then
both the Screen Image and the Bit Image are updated by the
Screen driver.

The Control Device provides calls which enable the Screen
driver and Applications to compose a screen together with
its attributes and then in a single command update the Bit
Image from the Screen Image.

3.3/4 Screen Driver

Using ESCape sequences

The ESCape sequences are detailed in two sections within
the manual. Appendix E lists them in quick reference form,
broken down by activity. They are also detailed in a later
section as a Table in ascending Ascii order.

The ESCape sequences provide the main control features on
the screen such as:

1. Screen characteristics e.g. intensity, underline ...
2. Cursor control e.g. position, UP DOWN, LEFT ...
3. Colour e.g. set palette, fore/background ...

4. WP primitives e.g. Insert line, Delete line ...

5. Hard copy

6. ANSI, a subset of the standard sequences

7. Fast and slow screen scrolling

The ESCape sequences form a Generic interface across the
Apricot family. For Applications writers wishing to produce
compatible software, each ESCape is annotated with one or
more of the following keys which indicates whether the
ESCape sequence is supported on the particular machine:

P - Portable
F-F1
A - Apricot PC & Xi

Examples of how to use ESCape sequences are to be found
throughout the manual. For readers unfamiliar with the
principles, a full explanation can be found at the beginning of
the section on ESCape sequences. To assist in the reading of
the following sections a short example is provided overleaf:

Screen Driver 3.3/5

Example: How to use an ESCape sequence

ESCape sequences consist of a series of predefined
characters which are sent to the Screen driver by the
Application. In BASIC this is done using the conventional
PRINT statement. The sequence is prefixed with a special
character, the ESCape character, whose decimal value is 27.
It is not a printable character.

The next character in the sequence is the command.
This in turn may be followed by one or more characters
depending upon the individual command.

Usually these sequences make programs difficult to read
and tend to clutter examples. For this reason exampies in this
manual define the command sequence in a string which is
then given a meaningful name.

Each string may then be used freely with or without
parameters as individual commands dictate.

10 CLSS=CHRS{27}+"E" 'Ciear screen command {no parameters}
20 ENVS=CHRS(27)+"7" 'Set environment {needs 1 parameter)

100 PRINT CLSS ‘Clear the Screen
110 PRINT ENV$+"2","40 column Display”

Statements 10 and 20 pre-define the commands for the
reason stated above. Statement 100 executes the Clear
screen ESCape command and then statement 110 invokes
the 40 column environment. Note that this requires an
additional parameter of “2”.

The full meaning of the Screen environment is discussed in
the next section and uses the definitions formed above.

For readers not familiar with using ESCapes the long hand
way of writing statement 110 is given below.

110 PRINT CHRS(27)+"7"+"2";"40 column Display”

In the short term there would seem to be little advantage in
using the methods given above. However, more complex
examples later in the manual demonstrate the benefits in
terms of readability.

3.3/6 Screen Driver

Screen environment

The screen environment may be modified at run time by
invoking a selection of ESCape sequences. These enable
Applications to select colour, width of the Screen and
Apricot compatibility.

There are 4 modes which may be selected to provide the
following environments:

ENVS + 0" 80 column Apricot monochrome
compatability.
The Cursor is Homed and any image already
on the Screen remains unchanged.

All Apricot attributes are supported together
with background and foreground colours.

ENVS+“1” 80 column 4 Colour
Apricot Compatibility is not supported.
ENVS+"2" 40 column 4 Colour

This mode is designed for use with TV's. On[y
one Apricot attribute is supported - Reverse.

ENV$ +"3" 80 column Apricot monochrome
compatability. As ENVS +70".

Reference to the Keyboard driver chapter shows that these
sequences have been implemented in the defauit version of
the keyboard table i.e. the environment may be set by
pressing certain keys.

The examples in BASIC later in the section illustrate the use
of these ESCape sequences.

The display may be driven in either 200 or 256 scan line
mode, which is determined at BOOT time by a Configuration
constant and cannot be modified during run time.

These line modes are supported by the incorporation of two
character Font tables within the user RAM.

The Font options are:

1.8 x 8 for the 200 line
2.8 x 10 for the 256 line

The BOOT routines select the Font according to the constant
in the configuration table and modify the pointers to reflect
the “active” Font. The screen is driven by default in 80
column Apricot Compatible mode.

Screen Driver 3.3/7

Apricot compatihle mode
The Apricot compatible mode supports the following
features:

1. Monochrome

2. Character attributes:

Reverse video
Intensity
Underline
Strikethrough

3. Word Processing primitives.
4. Screen dump
5. Partial windows

Apricot compatibie mode is not available when the Screen
environment is set to full colour, i.e. 4 from 16 colours.

The Screen Image has one word for each character on the
screen which holds the Ascii value of the character together
with it's attributes as illustrated below:

High Low

| N |
| |

Attributes Ascii character

The attributes are used to define either the character feature
stated above or the definition of background/foreground
colour but not both together.

3.3/8 Screen Driver

In 80 column Apricot compatible mode, any two colours are
supported in monochrome together with standard character
attributes. The attributes are not used to define the colours
in this case but are reserved for normal text attributes.

The attributes have the following settings:
APRICOT compatible -

7165141321} 0

| |
| * not used

strikethrough
underline
intensity
reverse

Colour -

716 ;514 1312|1(0

Foreground 4\—‘_‘ LL Background

(index) (index)

The index is a reference to the colour palette. This is
discussed in the next section.

Screen Driver 3.3/9

Colour

The colour palette provides a selection of 16 colours. Each
colour is designated a Colour code which is an Ascii value as
given below:

AscCii
Colour Colour code

Black

Blue

Green
Cyan

Red
Magenta
Brown
Light Grey
Dark Grey
Light blue
Light green
Light cyan
Light red
Light magenta
Yellow
White

- OOONOOPBWN O

Y |l A~

3.3/710 Screén Driver

Each entry in the palette is referenced by an index which is
also an ASCI! value. The palette is assigned default values on
Screen driver initialisation. The default settings for each

index are as follows:

Ascli
index

Ascii

Colour code Colour

S OWNOOORWN—=O0O

"“JV IlA--

A O~

Vo

TWOHNRLOd— ||~

Light Blue
White
Black

Light Red
Light Green
Yellow
Light Cyan
Light Magenta
Blue

Light Grey
Grey

Red

Green
Brown
Cyan
Magenta

The hardware configuration and screen environment dictate
how many colours may be used, i.e.

2 for Apricot Compatible monochrome
4 for Colour

The significant colours in each of these are taken to be in the
first x entries of the palette where x = 2 or 4.

Note:

1. In alt environments the first entry (index “0"} is the
basic background colour referred to later as the

“screen colour”.

2. In the 2 colour Apricot compatible mode the following
two entries have a significance:

index “Q”" - Background
index “1” - Foreground

Screen Driver 3.3/77

3. The above default settings provide an acceptable
contrast for all Applications regardless of the Display
attached.

This includes the ACT monochrome monitor which
provides a scale of 8 shades of grey. In this case the | bit
of the IRGB outputs is not used.

The setting of the palette is achieved via ESCape sequences
as the following example shows:
Example: Apricot compatible and full colour

10 REM - setting the Colour palette

20 CLSS=CHRS$(27)+-"¢" ‘clear screen

30 ENVS=CHRS(27)+"7" ‘environment ESC

40 RESS=CHRS${27}+"xG" 'reset palette

50 COLS=CHR3(27)+"]" ‘set palette ESC

7O FORES=CHRS{27)+"8" ‘foreground ESC

80 BACKS=CHRS{2/)+"8" ‘background
100 PRINT CLSS;RESS;ENVS;"3" "Apricot compatible 2 colour.
110 PRINT COLS;"D1"; ‘index 0" blue
120 PRINT COLS;"1>"; ‘index “1" yellow

130 PRINT “Yellow on Blue background”
140 INPUT "Press return key™; A 'just to pause
200 PRINT CLSS;RESS;ENVS;"1" "4 colour 'Port.- B colour

300 PRINT COLS:"02™ 'screen base green

310 PRINT COLS;"14"; ‘index 1 red

320 PRINT COLS;"29"; ‘index 2 light blue

330 PRINT COLS;"3>"; ‘index 3 yellow

400 PRINT BACKS;"1"; ‘char. background red

410 PRINT FORES;"3"; ‘char. foreground yellow

500 PRINT “Yellow characters on Red background”

510 INPUT “Press return”; A '{ust a pause

800 PRINT BACKS;"3" ‘char. background yellow

610 PRINT FORES;"2" ‘char. fore. light blue

700 PRINT “Light Blue chars. on yellow background”
Note:

1. Statement 100 sets the environment to 2 colour
Apricot compatible mode. The background and
foreground colours are defined in statements 110 and
120 respectively.

2. Statement 200 switches the environment to 4 colour.

3.3/72 Screen Driver

To illustrate the above programming example further the
palette is shown below in its reprogrammed form for the two
different settings generated in the example.

Palette after statement 110 & 120:

Ascii Ascii
index Col.code Colour
0 1 Blue
1 > Yellow
2 0 unchanged
thru
? 5 unchanged

Palette after statement 330 is:

Ascii Ascii
index Col.code Colour
0 2 Green
1 4 Red
2 9 Light Blue
3 > Yellow
4 : unchanged
thru
? 5 unchanged

Note: Index O is the Screen base colour.

Screen Driver 3.3/13

ANSI ESCape sequences

A subset of the ANSI escape sequences is supported by the
generic drivers through the use of ESCape sequences. The
format of an ANSI ESCape sequence is:

CHRS{27)+"["+ parameters
The functions available are:

Mnemonic Param. Code Function

CuU Cursor movement
Cuu n A nlines UP
Ccub n B n fines DOWN
CUF n C ncolumns forward
CUB n D ncolumns back
cup Y:X H position cursor at y;x
HVP Y;X f position cursor at y;x
(IBM compatible}
ER Text erase:
ED 0 J Erase-cursor to end
of screen
ED 1 J Erase-start screen to cursor
ED 2 J Clear screen. Cursor
not moved.
EL 0 K Erase-cursor to end of line
EL 1 K Erase-cursor to start of line
EL 2 K Erase-entire line of cursor
CP Report functions:
CPR 1.c R Cursor position to

keyboard buffer
SM Set mode:

LNM 20 h Auto CR (on receipt of LF)
DECCM 6 h Origin mode on
DECAWM 7 h Auto-wrap at end of line
RM Reset mode:

LNM 20 I No auto CR

DECOM 6 I Origin mode off
DECAWM 7 I No auto-wrap

TAC Text attributes

SGR) m All attributes off

SGR 1 m Bold ON

SGR 4 m Underline ON

SGR 7 m Reverse ON

SCR Screen size/mode

3.3/714 Scireen Driver

Mnemonic Param. Code Function

DSR 6 n Device status report
DECSTBM T:B r SetT (top)and

B (bottom) lines
SCP s Save cursor position
RCP u Restore cursor position

The ANS| ESCape sequence parameters are required in the
order:

CHRS${(27) + “[" + ‘param list” + ‘Code’
Where there is more than one parameter a list is required
with each parameter separated by a semi-colon.
Example: Cursor movement
10 ANS=CHRS${27)+"[" ANSH lead-in

20 PRINT ANS:“2J" ‘clear the screen
30 PRINT ANS:“10:15H"

A0 PRINT “print from line 10 column 15"

50 PRINT ANS:“BA™
60 PRINT "naw from line 5 column 1"

70 PRINT ANS;"10;14r";
80 PRINT "screen 5 lines high i.e lines 10-14"

Screen Driver 3.3/715

.Windsws and Cursor éddressing

A window may be designated in any rectangular block on the
screen. The remainder of the screen remains unchanged.

All Print, scrolling and WP primitives will restrict themselves
to the bounds of the window. Direct cursor positioning
however is relative to the whole screen.

Example: Outline a window

1 width=255
10 eseS=chr$(27) ‘ESC
20 clsS=escS+"E" ‘clear window or screen
30 windowS=esc$+"" ‘to set window
40 nowindS=escS+"" ‘cancel window
50 curS=esc$+"Y" ‘position cursor
100 print cis$;nowinds; ‘clear screen - no window
110 input “top line top
120 input "hottom line “hot
130 input “left margin)i
140 input “right margin gt

‘do not allow 0 coardinate

150 print windowS+chr${31+top)+chr$(31+hot)
+chr${31+Ift)+chr${31+rgt);

200 print esc$-+"p"; 'reverse video to emphasise

300 far row=top to ot
310 for col=Ift to rgt

320 print curS+chr$({row+31}+chr${col+31)" " ‘outline window
330 next col

350 next row

400 print ese$+"gq"; 'turn off reverse

410 print escS+"H"; ‘home cursor within window
420 input "press return™:a just to pause then da again
430 gots 100

The example shows in statement 320 that cursor addressing
is relative to the screen and NOT the Window origins. The
cursor positioning and the window definition ESCape
sequences require that each co-ordinate be offset from 31
decimal or 32 decimal depending upon whether the
application is using an origin of 1 or O respectively. This
example uses an origin of 1, 1.

Note: The last line in this example will scroll up!

3.3/16 Screen Driver

Fonts

The ROM BIOS has an in-built character Font limited to the
first 128 characters in the standard Ascii set detailed in the
appendices. This permits the BOOT sequence to use the
screen.

This is an 8 x 8 bit Font, i.e. 8 bytes per character, which
drives the screen in 200 line mode.

The RAM BIOS subsequently loads the file "FONT.SYS” into
the user RAM which consists of 2 different Fonts for the full
256 Ascii character set. They are:

1.8 x 8 for 200 line mode
2.8 x 10 for 256 line mode
The Pointers

00706H Base of Active Font

0070AH Length of Active Font

O070CH Base of Master Font

00710H Length of Master Font (i.e. of 8 x 8 and 8 x 10}

are then initialised to point to either Font (see Appendix C).
The 8 x 10 Font is located at Master Font + 2048 byies
(i.e 256 x 8 bytes).

The character Fonts in FONT.SYS may be altered by using
the Edit Font utility supplied with the Apricot F1 or
alternatively by modifying the RAM based Font.

The latter may be achieved in two ways:

1. Loading a complete new table and changing the
pointers to the active table to reflect the location and
length. Refer to Keyboard table example.

Note that the Master pointers are required by the
screen driver to provide for environment switching.
Care must be taken in changing them.

2. By modifying one or more locations directly in the
existing Font.

Screen Driver 3.3/17

Ascii control cades

The Screen Driver handles control codes i.e. codes with an
Ascii value which is less than 20 hex as follows:

3.3/18 Screen Driver

00 - NUL no action
01-S0OH no action
02-5TX no action
03-ETX no action
04 -EQT no action
05 - ENQ no action
06 - ACK no action
07 - BEL sounds the BELL
08 -BS moves cursor back one space
09 -TAB moves cursor right in modulus of eight
OA-LF moves cursor down 1 line
© 0B-VT moves cursor down 1 line
- QC-FF moves cursor down 1 line
= 0D-CR moves cursor to beginning of current line
- QE-SO rno action
OoF-SI - no action
10 -DLE no action
11-DC1 no action
12 -DC2 no action
13-DC3 no action
14 -DC4 no action
15 - NAK no action
16 - SYN no action
17 -ETB no action
18 - CAN no action
19-EMM no action
1A -SUB no action
1B-ESC invokes an ESCape sequence
1C -FS no action
1D -GS no action
1E - RS no action
1F - US no action

ESCape Sequence Table

The table set out in this section lists the complete set of
ESCape sequences for the Generic BIOS.

Appendix B lists the ESCape sequences by type of activity,
e.g. WP primitives, Keyboard related, etc.

ESCape sequences consist of a sequence of characters
always commencing with the ESCape code 27 decimal. This
is best illustrated with BASIC as follows:-

PRINT CHR${27)-+"function"+"parameter(s)”

where:
function is a Ascii value in the range 20H to 7DH
parameter(s) is an Ascii value in the range OOH to 7FH

(The number of parameters varies according to the
function).

ESCape sequences may have no meaning on certain
machines. For example those affecting the Microscreen are
not implemented throughout the Apricot family. Also certain
ESCapes are listed as No-op’s. Do not use these ESCape
sequences - they are not supported.

The parameters supplied for cursor control sequences are
based upon an origin of column 1 line 1. Any other required
origin should be relative the base of 32 decimal.

Availability is denoted by the Machine Key in each entry. The
Key is:

A - Apricot

F-F1

P - Portable

Screen Driver 3.3/19

ESCape sequence tahle

CHAR HEX KEY Function

23 No-OpP
S 24 PFA Transmit Character

Sends the character under the
cursor into the keyboard buffer.

% 25 No-OP
& 26 PFA Print Page

Outputs the contents of the
screen to the line printer. A
form-feed is executed first.

! 27 PFA Print line

Outputs the entire line that the
cursor is at to a connected line
printer. No form feed is executed.

(28 PFA Set High intensity Mode

Shadow-prints all characters to
give the effect of high intensity
characters.

} 28 PFA Set Low intensity Mode
Clears the mode set above.
2A A Change to second character font.
+ 2B A Clear all high intensity characters.
2C PFA Set Window size.

Takes four parameters in Ascii:
< 1= Top line + 31

«2> Bottom line + 31

<3> Left-hand column + 31
<4 = Right-hand column + 31

2D A Clear all low-intensity characters.
2E PFA Reset Window Size.

Resets the window size set by
code 2C

/ 2F A Set membrane key LED’s.

*

3.3/20 Screen Driver

ESCape sequence tahle (continued)

CHAR HEX KEY Function

0 30 PFA Sets underline mode,

All characters printed have a
single line of pixels placed under
them to simulate underline.

1 31 PFA Reset underline mode.
Cancels the mode set above.

2 32 No-op
3 33 A No-op

>

Screen Driver 3.3/27

ESCape sequence table (continued)

CHAR HEX KEY Function

4 34 PFA Change the representation of a key.

This escape sequence takes 3
parameters.
They are:

< 1> - Key mode {ascii}
1 = normal
2 = shift
3 = control

<2> - Key number — 1:
O = help... etc.
{see Appendix B)

<3> - New key character
Ascii char. or hex equivalent.

10 PRINT CHR${27)+"4"+"3"+
CHRS(72)+"C"

This example changes the key
with the legend “C” (downcode
number 72), in control mode, to
generate an Ascii “C” (43H) as
opposed to a binary O3H.

The key has the default attribute
of AUTO-REPEAT.

Refer to Appendix B for a list of
keys, their corresponding
character value, down code and
attributes.

Note: The Screen Driver does not
accept non-printable
characters {range O to 31}
in ESCape sequences
therefore no Key or Key
character can be
programmed with a value
below 32. See <2> and
«<3> above.

3.3/22 Screen Driver

ESCape sequence tahle (continued)

CHAR HEX KEY Function

B 35 PF Set character foreground colour.

This escape sequence takes 1
parameter which is from “Q"”
(30H) to “?” (3FH). This gives 16
possible indexes.

For alist of indexes and colours
represented by them see escape
sequence “]” (bDH). See also the
diagram for ESC “6" (36H) below.

6 36 PF Set block or background colour.

This escape seguence sets the
colour of all pixels in the character
cell that do not make the actual
character shape. As above, it
takes 1 parameter.

Diagram of a character cell:

Background {all O’s)
00000000 —
00111100
00100100
001001 —Foreground or text
00111100 colour (all 1's)
00100100
00100100
00000000

Sereen Driver 3.3/23

ESCape sequence table (continued)

CHAR HEX KEY Function

7 37 PF Set screen environment.

This sequence is followed by one
of the following mode
parameters:

“0Q" - Apricot PC & Xi
monochrome compatibility

717 - 80 column full colour
display

2”7 - 40 column mode

3" - 80 column Apricot
compatible Display

Refer to section Screen
environment for operational
details.

8 38 PFA Set literal/ Test mode ON

The escape sequence tells the
screen driver to perform the
following action on receiving the
next character:

lgnore the fact that it is a control
code (<20H) and print the
character associated with it.

This means that the font cell
characters under (20H) are
printed, rather than obeyed.

The ESCape must be sent for
each character.

9 39 PFA Set strikeout mode ON

All following characters are
displayed with a horizontal line
through the centre.

This is widely used for deleting
data within legal documents.

3.3/24 Screen Driver

ESCape sequence tahle (continued)

CHAR HEX KEY Function

3A PFA Set strikeout mode OFF,

The code reverts the action of “9”
(39H).

38 PFA Position cursor to start of status
line.

The status line is the 25th line of
the Screen. The Cursor remains
on this line until a position Cursor
command is given.

< 3C A Display time on MSCREEN.
= 3D No-OP

> 3k No-OP

? 3F A Enter CALC mode

This escape sequence switches on
the internal BIOS calculator. It is
the same as pressing the “Calc”
key.

@ 40 PFA Enter insert mode.

After this escape sequence is
issued, whenever a character is
printed, all the characters to the
right of it will be shifted right one
place and the character will be
inserted in the space created.

41 PFA Cursor UP.

42 PFA Cursor DOWN.
43 PFA Cursor RIGHT.
44 PFA Cursor LEFT.
45 PFA Clear screen.

The current window is cleared,
and the cursor is homed.

m oo WP

Screen Driver 3.3[/25

ESCape sequence table {continued)

CHAR HEX

KEY

Function

F

46

47

48

49

4A

4B

PFA

PFA

PFA

PFA

PFA

PFA

Enter VT52 Graphics mode.

VT52 mode displays the VT2
standard graphics characters
represented by the Ascii value of
Apricot lower case characters.

Exit VT52 Graghics mode.

Invoke this mode to exit VTH2.
Faiture to do this results in non
lower case letters being
incorrectly displayed.

Home Cursor.

The cursor is placed at the top left
hand corner of the current text
window.

Reverse-index and line-feed.

This sequence moves the cursor
up one line. However if the cursor
is at the top of a window then a
scroll DOWN of the whole
window is performed.

Erase to end of Page.

The sequence first of all erases all
characters from the cursor
position to the end of the current
line, and then all subsequent lines
below the cursor till the end of the
current window or page.

Erase to end of line.

This escape sequence erases all
characters from the cursor
position to the end of the defined
right-hand side margin.

3.53/26 Screen Driver

ESCape sequence table (continued)

CHAR HEX KEY Function

L a4C PFA insert line.

This seguence places the cursor
to the beginning of the current
line, and then inserts one line
below the current cursor position
by scroiling all subsequent lines
down by one place.

M 4D PFA Delete line.

This sequence places the cursor
to the beginning of the current
line and scrolls all lines under it up
by one place.

N 4E PFA Delete character.

The character under the cursor is
cleared, and all characters to the
right are scrolled left by one
position. This is active in the
defined right-hand margin space.

0 aF PFA Exit Insert Mode.

This sequence reverses the effect
of ESC “@" (40H)

P 50 PFA Insert single character.

This sequence scrolls all
characters from the current
cursor position to the defined
right-hand margin right by one
place.

Q 51 PFA Scroll left.

Takes one parameter which is the
number of columns plus 31 that

the screen is to be scrolled. This is
only active in the current window.

R 52 PFA Scroll right.
As above but scrolling left.

Screen Driver 3.3/27

ESCape sequence tahle {continued)

CHAR HEX

KEY

Function

S

—

=X <C

53

54

5b
56
57
58
59

bA

5B

PFA

PFA

A

A

A

PFA

PFA

PFA

Scrolt up.

As above, but scrolling is up.
Scroll down.

As above, but scrolling is down.
Enable dual-output to MSCREEN
Disable dual output.

Output text to microscreen only.
No-OP

Position Cursor.

This seguence takes two
parameters. They are the line
number and column number in
normatlised Ascii.

eg: PRINT CHRS(27) "Y" CHRS{10+31)
CHRS$(156+31)

will position the cursor at line 10,
column 15.

Identify as VT52.

This escape sequence is included
as most of the screen driver is
DEC VTbZ compatible. After
issuing this sequence the
keyboard buffer is filled with three
characters which can be read by
an application to determine the
device type.

ANSI lead-in character.

Refer to section ANSI ESCape
sequences for details of the ANSI
codes supported,

3.3/28 Screen Driver

ESCape sequence table (continued)

CHAR HEX KEY Function

/ 5C PFA Place key in keyboard buffer.

This sequence takes one
parameter which is placed in the
keyboard buffer. If the bufferis
full the bell will sound and the
character will be ignored:

e.g. PRINT CHR$(27) "/R"

will place an “R" into the
keyboard buffer.

] 5D PF Set palette code.

This escape sequence takes two
arguments. The first is the index
which needs to be changed, and
the second is the colour.

e.g. PRINT CHRS(27) 105"

sets index O {in this case the
background) to colour 5.

Refer to the Colour section for full
details of index, colour and
default palette settings.

A bE No-OP
_ hF No-OP
! 60 PFA Save environment

The first three environment flags
are saved. They can then be
temporarily changed and restored
by another sequence.

a 61 PFA Restore environment

Returns the first three
environment flags to their state
just after code 60.

Screen Driver 3.3/29

ESCape sequence table (continued)

CHAR HEX

KEY

Function

b 62

63
64
65
66
67

@ - 0o o O

PFA

> > > P >

PFA

PFA

PFA

PFA

PFA

Erase from start of page

All characters from the top
left-hand corner of the current
defined display page size to the
current cursor position are
cleared.

Disable MSCREEN scrolling.
Enabie MSCREEN scrolling.
Switch MSCREEN cursor ON.
Switch MSCREEN cursor OFF.

Disable Time and Data display on
microscreen.

Reverse tab.

This sequence has the opposite
effect of control code 9 hex, it
performs a tabulation operation
to the left rather than the right.

No-QOP
Save cursor position

The current cursor position is
noted within the BIOS.

Restore cursor

The cursor is restored to the
position it was in before ESC 7}’
was executed.

Eraseline

The line which the cursorison is
cleared.
Note that no scrolling takes place

No-OP

3.3/30 Screen Driver

ESCape sequence table (continued)

CHAR HEX KEY Function

n 6E PFA Return Cursor position.

The current cursor position is
placed into the keyboard buffer in
the ESC+"Y" format with a base

cofumn and row of 1.
0 BF PFA Erase to start of current line.

All characters from the start of
the current line up to and
including the character under the
cursor are cleared.

p 70 PFA Enter reverse video mode.

All characters printed after this
sequence are displayed in inverse
video.

q 71 PFA Cancel inverse video mode.

Restores the writing mode to the
state it was in before ESC 'p” was

executed.
r 72 A MSCREEN echo enable.
S 73 A MSCREEN echo disable.
1 74 No-OP
u 75 No-OP
v 76 PFA Wrap at end of line.

This escape sequence indicates
that the normal screen driver
action when the cursor reaches
the end of a line should be
employed. The action is to return
the cursor to the beginning of the
next line on the screen.

Screen Driver 3.3/31

ESCape sequence tahle (continued)

CHAR HEX KEY Function

Y 77 PFA Discard at end of line.

When the cursor reaches the end
of the current line, it will remain
there and all characters are
printed under it.

X 78 PFA Set environment flags.
Takes one parameter:

PF G - reset screen palette
PF $ - set to Apricot Compatible
mode on default screen
1 -enableline 25
2 - nothing
3 - nothing
4 - nothing
b - cursor off
6 - nothing
7 - nothing
8 - set auto LF on receipt of CR
9 -set auto CR on receipt of LF

A - nothing

B - nothing

C - nothing
PF D - smooth screen scrolling
P E - L.CD contrast up
PF F - bell volume down

3.3/32 Screen Driver

ESCape sequence tahle (continued)

CHAR HEX KEY Function

y 79 PFA Reset environment flags.
Takes one parameter:

1 - disable line 25

2 - nothing

3 - nothing

4 - nothing

5 -cursor on

6 - nothing

7 - nothing

8 - no auto LF on receipt of CR
9 -no auto CR on receipt of LF

A - nothing
B - nothing
C - nothing
PF D - fast screen scrolling
P E - LCD contrast down
PF F - bell volume up
z 7A PEA Reset all screen drivers.

Sets all screen drivers to
power-on status.

4 7B No-OP

I 7C No-OP

] 70 PF Reserved for GSX - callis not
supported.

Screen Driver 3.3/33

Systems interest

Screen Bit Image

The Apricot F1 has a bit screen memory which enables
normal text and graphics to be combined on the same
screen.

The Bit Image is fully discussed both from a physical and a
software point of view in the Hardware section of this
manual.

The Screen Driver provides the Display with a choice of
environments as discussed in the Applications section.

The block diagram below shows how the Bit Image is
logically divided to support the Apricot in the Screen Driver
environment,

The Bit Image of 42K bytes is located at address 2000 hex.
The Image is divided into 2 Planes. One plane is formed by
the low bytes of each word; the second plane by the high
bytes. A bit from each Plane is used to derive a choice of 4
colours from the palette.

The Bit image of each character depends upon the attributes
and screen environment and these are discussed fully in the
next section.

In text mode the characters from the screen image are coded
depending upon the Active character Fontintoan8x 8 or 8
x 10 bitimage.

In addition to the Bit Image the Apricot incorporates an area
of 200/256 Display Line Pointers located between 00 1EQQ
and 00200 hex. Each pointer represents a 640 Pixel line on
the Display. Manipulation of the Line Pointers enables very
fast scrolling up/down/left/right and in general very
sophisticated screen handling.

3.3/34 Screen Driver

Interface Connection Detail

System Connections

DO to D7 Databus. Used to transfer data, commands
and status information between the CPU and
the FDC.

WE Write Enable. Write control input connected
to the AIOWC control line of the system
control bus. Active state, logic low. Used in
conjunction with CS and the register select
inputs (AO, A1)} to transfer data and
commands from the data bus to the FDC.

RE Read Enable. Read control input connected
to the IORC control line of the system control
bus. Active state, logic low. Used in
conjunction with CS and the register select
inputs {AQ, A1) to transfer data and status
information onto the data bus from the FDC.

CSs Chip Select. Address input. Active state, logic
low. When active, indicates that the FDC is
selected for a data/command transfer
operation.

AQ, A1 Register select lines. Inputs connected to A1
and A2 of the system address bus Used to
select internal registers within the FDC for
data/command/status transfers, via the data
bus as detailed below.

Al AQ

0O 0 Status/Command registers
0 1 Track register

1 0 Sector register

T 1 Data register

INTRCQ Interrupt Request. Qutput connected to The
NMI request line of the CPU. Active state,
logic high. When active, signifies that the
FDC has terminated a command operation.

Floppy Disk Interface 2.6({35

DRQ Data Request. Output connected to the TEST
input of the CPU. Active state logic high.
When active, signifies to the CPU that the
FDC is ready for a data transfer operation.

ViR Master Reset. Input connected to the System
Reset control line. Active state, logic low.
When active, causes the FDC to reset its’
internal registers.

CK Clock input. 2 MHz clock with a 50% duty
cycle for internal timing within the FDC.

- 2.6[/36 Floppy Disk Interface

Apricot Bit Image RAM

OAS800
PLANE PLANE
02000 low high
01234567 89 ABCDETF

~ For each word the low to high bits are mapped to form a
colour selection for each Pixel, i.e. Bit O and Bit 8, Bit 1 and
Bit9...Bit 7and BitF

Other options are available though not supported by the
Screen driver. 16 colour is derived by mapping the Bit image
into 4 planes instead of 2. This can only be achieved in 40
column mode as 4 bits are required to define each Pixel and
hence 2 words per character line.

In this case the colour decode hardware maps Bit O, 1, 8 and
9 to Pixel O, Bits 2, 3, A and B to Pixel 1 etc. This mode is
discussed in detail in the Hardware chapter.

Character attributes

The character attributes are not contained in the Bit Image
but located in a separate |mage as discussed in the section
on Screen images.

The attributes differ when using Colour or Monochrome
mode as discussed in the section Apricot compatible mode.

The Bit Image is derived from the Display Image by software
manipulation. This manipulation differs according to the
environment and colour mode.

In Monochrome Apricot Comapatible mode the Bit Image is
generated by translating the character via the active Font
and then amending the character according to the attributes
set by bit manipulation. For example Strikethrough is
achieved by “setting” the Pixels in the character centre line
of the Bit Image.

Screen Driver 3.3/35

In Colour the attributes are interpreted as the foreground
and background colour selectors.

The character is translated via the Active Font and then each
bit is mapped into the 2 colour planes to correspond to a
selection {index) from the colour palette.

40 Column mode

The 40 column mode is available for TV screen support.

Characters are generated in the same way as described in
the previous section but with the difference that they are

doubied in width in the Bit Image i.e they occupy a 16 x 8
cell.

Screen image:

— Standard 80 column —
0A80Q0 hex

< 40 column (doubled up bits} —

02000 hex

Scrolling

Scrolling is achieved through the use of ESCape sequences
as described in the Applications sections.

There are four methods of scrolling, i.e.

Left -ESCH+“0Q"+n
Right -ESC+“R”"+n
Up -ESC+“S"+n
Down -ESC+“T"+n

where n is the number of character positions (vertically or
horizontally) + 31 Ascii. The complete window is scrolled.

A set of 256 word pointers located at 0 1EQQ hex in the RAM
are used to point to a Pixel line in the Bit Image. Scrolling and
other effects are achieved by swapping these pointers. For
200 line displays only the first 200 pointers are significant.

3.3/36 Screen Driver

Configuration table

The screen driver entry is located at offset 20 hex in the
configuration table and contains the following:

O -line mode 0= 256
1 = 200
1 - environment : O = Apricot compatible monochrome
1 = 4 colour
2 = 40 column
2 - image switch :0=on
1 = off

3 - spare (12 bytes)

Screen Driver 3.3/37

Contents

Overview
Application interest

Changing the keyboard table
Implementing STRING keys

Changing the keyboard driver operation
Special Keys

Default STRINGS

Prefixes

User Interrupt (FQ hex)

Systems interest

Initialisation
Steering

Down-code handler
Queues
Configurator
Apricot compatibility
Configuration table

Hustrations

T. Downcodes

Keyboard driver 3.4/1

Overview

The Keyboard driver software handles communications
between the §10 and MS-DOS. Serial data is received by the
S10 from both the Keyboard and the Mouse.

The driver distinguishes between the two and vectors to the
appropriate routine. The Mouse driver is of sufficient
importance to be treated as a separate section of the drivers.
Here we will concentrate on the keyboard.

Applications running under MS-DOS receive data from the
keyboard via normal MS-DOS CALL (INT 2 1H).

The action of pressing a key or combination of keys, e.g.
SHIFT+ or CTRL +, will result in the SIO generating an
interrupt and passing a packet of data in Hamming coded
format to the SIO interrupt handler. The data is then
converted and presented to the driver in the AX register in
the following format:

)FEDCBA9876543210

[undefined] |_X-coord._| |_ Y—Coord.J

SHIFT status
CTRL status
REPEAT status
= Q Keyboard

A similar packet is sent for the Mouse except thatbit B = 1.

The X and Y coordinates are converted into an offset within
the soft keyboard table. The generic keyboard has 104 keys
and the offset is in the range 0 to 103. Each of these is
referred to as a “down-code”,

The keyboard table is divided into sections, each of 104
words, to facilitate the following:

Normal - key without SHIFT or CTRL
Shifted - SHIFT + key
Control - CTRL + key

The attribute bits 8 and 9 of the packet determines which
section of the table is to be used to transiate the down-code.

3.4/2 Keyhoard driver

The translation of a down-code is dependant upon further
attributes in the corresponding entry of the table. Each entry
is a word of the following format:

(0} < 15 bit STRING pointer =

FI{E|D|CiIB|A|9!87|6|5!/43[2|1]|0

i | |

ASCIl value or Special code

Prefix: 00 = no prefix
01 = ‘ESC’
10 = ‘ESC’ +{"
11 = not used

Local Key {Data to Screen)
CAPS LOCK

SHIFT LOCK

AUTO REPEAN

Special Key in bit0-7
non-STRING

Attribute bits A -F are: '‘ON’ ifsetto 1
‘OFF if setto O.

The exception to this format is when “Non-STRING”
attribute bit F is set ‘OFF’, implying that the down-code is to
be translated into a string of data. In this case the format is:

bit O - bit E - String offset of 15 bits {i.e. 32K)
bitF -set 0 = STRING

The STRING facility enables any key to be translated into a
string of data. e.g. The F 1 key may be interpreted in BASIC
as the character string RUN plus a CR which results in 4

characters being returned to the application level via
MS-DOS.

These STRINGS, which may be of variable length, are
appended to the end of the three sections of the Keyboard
table described above. The default table is 1024 bytes long -
the first 312 words for each of the 3 sections described
above, followed by a 200 word table reserved for “Default
STRINGS™.

Keyboard driver 3.4/3

The remaining attribute bits have the foliowing meaning:
AUTO REPEAT When set enables auto repeat on this key.

SHIFT LOCK When set in the NORMAL entry then the
Key is affected by SHIFT LOCK mode. The
driver translates the Key from the
SHIFTED area of the table.

CAPS LOCK When set in the NORMAL entry then the
Key is affected by CAPS LOCK mode. The
driver translates the Key from the
SHIFTED area of the table.

LOCAL KEY When set the translated key is directed to
the screen and NOT to the Queue.

PREFIX The prefix is derived from the vaiue of
two bits and dependent upon the value an
ESCape sequence is pre-fixed to the
translated data (see the section on
prefixes).

The default Keyboard Table, if present on the Boot disk, is
loaded into RAM at BOOT time. [t may subsequently be
modified either by replacing it entirely with another table or
simply by changing specific entries. This procedure is
described in the section Applications Interest.

The Driver translates each key into one or more data bytes
which are then appended to a 'ring buffer’ queue. If the data
will not fit on the end of the queue then it is lost and the
BELL is sounded.

MS-DOS accesses the keyboard via the RAM BIOS using
calls to the Control Device: typically requests for “get data
from queue” or “Flush queue”.

Application programs may by-pass MS-DQOS and use the
same facilities in the Confrol Device.

This is of advantage where the normal operation of the
keyboard driver is not required. For example, if the
translation procedure described above is not required, the
Application may alter the actions of the keyboard driver to
return the down-codes in the queue, without translation.
These down-codes are referred to as “Raw data”. Various
other facilities are also available and detailed in the Control
Device chapter.

3.4{4 Keyboard driver

The following section describes with examples how the
applications may take advantage of the Generic keyboard
facilities. In addition, it describes in detail all of the Special
Keys and their actions.

The Systems interest section describes the modules making
up the driver and special features implemented in the
software such as Auto-repeat.

Keyboard driver 3.4{5

Apnlications Interest

Changing the keyhoard table

There are three methods of changing the Keyboard table in
RAM, they are:

1. Use the system utilities to modify the system table.
2. l.oad a new tabie and change pointers to it.
3. Change values within the default table.

If the modification is to be permanent then the Keyedit
Utilities should be used to amend the Keyboard table.

To implement the second option above it is sufficient to load
the new table into a reserved area of memory and then to
change the Pointer to the “active keyboard table” to reflect
the.new location. REMEMBER to restore the original pointer
if the following Application is not known.

Example: Load a new keyboard table and point to it.

100 BIM TABLE%(1023) 'data area for user Table

110 TABOFF%=VARPTR{TABLE%(D)} ‘offset within data segment

120 CALL GETSEG%(SEGY) 'data segment {refer Appendix F)
200 DEF SEG=D 'segment for PEEKS & POKES

210 KS=PEEK(&HO714}+({2b6%PEEK|&HO715)) "segment - old pointer
220 KO=PEEK(&H0712}+(256+PEEK(&HO713)) ‘offset - old pointer

240 POKE &H714 {SEG% AND &HFF) ‘segment - new pointer
250 POKE &H715{SEG% AND &HFFQO0)/256

260 POKE &H712,(TABOFF% AND &HFF) ‘oifset - new pointer
270 POKE &H713,{TABOFF% AND &HFF0Q)/256

300 DEF SEG ‘hasic data segment
310 BLOAD "KEYTAB" TABOFF% ‘load new table

The memaory image of the table in “"KEYTAB”, which must
have been created with a BSAVE statement, is loaded into
the array TABLE%. The called subroutine at GETSEG% is
defined in Appendix F {Language interfaces to the BIOS).
This routine must be merged with the example program for
execution purposes.

Statements 210 and 220 simply save the BIOS pointers to
the active keyboard table in order that they may be restored
after execution of the program.

3.4/6 Kevhoard driver

To change values within the default table simply pick up the
Pointer to the base of the table and modify the specific
locations offset to the base address.

The example of switching keyboard tables above is
dependant upon a table being previously BSAVE'd. Many
other methods of loading a Keyboard table may be derived
and in certain cases will be necessary. Compiled Microsoft
Basic does not support BSAVE, for example, so a different
method is required.

The BLOAD and BSAVE method, however, serves the
purpose of illustrating the technique and for completeness
the example beiow shows how to save a table.

Example: Save the active keyboard table
120 CALL GETSEG%{SEG %} ‘data segment (refer Appendix

200 DEF SEG=0 ‘segment for PEEKS & POKES
210 KS=PEEK{&HO714}+{256+PEEK{&HD715)) "segment - old pointer

220 KO=PEEK{&HO712)+{256+PEEK(&H0713)) ‘offset - old painter

230 KL=PEEK(&HO716)+(256%PEEK(&HQ717}) ‘length

300 BSAVE “KEYTAB" KO,KL ‘save active table

This example may be brought into perspective by combining
it with the previous example and the one that follows in the
next section. The result is a Keyboard Table being saved with
a few changes from the default. Then the modified table may
be loaded at any time as described above.

Minor changes to the Keyboard Table at run time may also be
made by simply picking up the Pointer to the base of the
table and modify the specific locations offset to the base
address.

Alternatively further techniques are described in the Screen
Driver chapter in the ESCape sequence section.

Keyboard driver 3.4/7

implementing Key STRINGS

There are many cases in practice where the depression of a
single key can eliminate the tedium of typing in a complete
sequence of characters. In BAS|C certain verbs are
commonly used in the interactive mode while testing, for
example:

PRINT - to check contents of variables
LOAD -toload files
SAVE -to save files

Whatever the application, keys may be modified to reflect
the input of a complete string of characters to the keyboard.
Typically the function keys would be used to accomplish this.

The Key STRINGS are located at the end of the 3 sections of
the down-code translation table. In order to add Key strings
to the list it is neccessary to perform the following:

1. Insert the new Key STRING and attributes at the end of
any existing assignments.

2. Modify the down-code table to point to it.

The following program illustrates how to modify the 9
function keys F 1 - F9 to represent BASIC commands as

follows:
F1-RUN FG6 - PRINT
F2 - AUTO F7 - LOAD
F3-LIST FS - SAVE
F& - LLIST FO-DELETE
Fb - RENUM

in addition F1 to F5 are set up to generate the STRING + a
carriage return when SHIFT + Fkey are pressed.

The program sets up the following parameters in DATA
staternents:

MODE -0 = normal, 1 = SHIFT, 2 = CONTROL
KEY -down-code

KEYS -STRING

CR -0=noCR, 1 = with CR

It searches from the end of the table for the first free

STRING entry and then places each new entry successively
at the end of the table and updates the pointer in the relevant
part of the down-code table. |f the CR parameter is non-zero
then an additional entry is made in the SHIFT section with
the addition of a CR {Carriage return).

3418 Keyboard driver

Example: Implementing Key Strings

100 REM set up function keys
11Q DATA 9 'no of items in fist
120 BATA 0,0,"RUN " 1

130 DATA O, 1,"AUTC "1

140 DATA 0,2,"LIST" 1

150 DATA0,3,"LLIST "1

160 DATA 0,96,"RENUM "1
170 DATA0,4,"PRINT " 0

180 DATA 0,5,"LOAD ",0

190 DATA D,6,"SAVE™,0

200 BATA 0,7,"DELETE",0

500 REM get pointers

570 DEF SEG=0

520 KS=PEEK(&HO0714)+{256+PEEK|&HD715)] 'segment
530 KO=PEEK(&H0712)+(256%PEEK(&HO713)} ‘offset
540 KL=PEEK{&HO0716)+{256+PEEK|&HD717)] 'length

600 DEF SEG=KS

610 J=KO-+KL-1 ‘end of table
620 WHILE PEEK(|J)=0 : J=J-1 : WEND

630 J=J4+1 'start of free string tahle

635 REM "check for sufficient space ™

640 READ N 'no of DATA statements
650 FOR =1 TO N : READ MODE,KEY KEYS,CR

660 POKE J LEN(KEYS) 'STRING length
670 POKE J+1,0 ' attrib
680 FOR X=1 TO LEN{KEYS)

690 POKE J+1+X ASCIMIDS(KEYS X))
7DONEXT X

720 DEF 3EG 'BASIC data

730 P%=J "set up 15 bit pointer

740 P1=PEEK{VARPTR(P%)):P2=PEEK(VARPTR{P%}+1)
750 DEF SEG=KS ‘put it in down-code table

760 POKE KD+{MODE*208)+{KEY*2},P1

770 POKE KO+{MODE*208}-+(KEY*2)+1,P2

780 J=J+2+LENIKEYS)+1 "point to next free entry
790 IF CR < >0 THEN KEYS=KEY$+CHR${13): MODE=CR: CR=0: GOTO 660
BOQ NEXT N

No_te: The example may modify the default table settings
which already have pre-defined functions such as invoking

the calculator. Refer to the Keyboard Table in the Appendix
for details.

Keyboard driver 3.4]9

Changing the Keyhoard driver operation

The Overview of this chapter describes how the Keyboard
driver works by default.

The mode of operation may be changed by “special” keys,
which are detailed in a later section, or by calls to the Control
device. The latter is considered below,

The Keyboard driver normally translates down-codes into
data from the active keyboard table and then places the data
in the queue.

Some applications, however, require that the “raw”
down-codes are not translated. This may be achieved by
changing the “Fall-thru” mode via command O004H of the
Control device.

Example: The “Fall-thru” mode

100 DEF SEG=60H :10=0 'point te Control device vector
105 COM%=7.DAT%=0:G0SUB 1000 'set HELP ignore off
110 COM%=4:GGSUB 2000 ‘togyle the “Fall-thru” switch

120 IFRET%=1 THEN PRINT “"RAW Down-codes:"
130 1F RET%=0 THEN PRINT "ASCl normal values”

200 COM%=&HB:gosuh 1000 'wait for ¢har. in queus
210 PRINT RET%; ‘print its value
220 [FRET%=1 THEN 110 ‘if true then toggle mode
230 G0OTG 200

1000 DEV%=&H32

1010 CALLIO{DEY%,COM®%,DAT%,RET%)} ‘execute command

1020 RETURN

2000 DAT%=-1: GOSUB 1000 ‘get current setting

2010 DAT%=RET% XOR t: GDSUB 1000 toggle it

2020 RETURN

The exampie displays the current “Fall-thru” setting and
waits for a key to be pressed which results in data being
placed in the queue.

The options are to display the down-code in therange 1 -
104 or to display the transiated value of the key from one of
the three sections of the table, i.e. Normal, SHIFT or CTRL.

3.4/710 Keyboard driver

The program toggles the “Fall-thru” mode whenever it
receives the value of 1in RET%. This value is the result of
different key depressions in the two modes, they are:

HELP (or F1) - In “Fall-thru”
CTRL+A ~in normal mode

The HELP key has special significance to the driver and if it
were detected in this program then it would not work, For
this reason the HELP ignore call is made at the beginning of
the program. Refer to Systems interest for further details.

The subroutine at statement 2000 illustrates the GET/SET
feature of the Control Device. The setting of invalid data in
line 2000 results in the call returning the current setting
unchanged. Line 2010 then toggles the setting with an
exclusive OR and calls the Control Device again.

Refer to the Control Device for further calls affecting
Keyboard driver operation.

Notes:

1. The down-codes presented to the driver are in fact in
the range O to 103. However the driver increments
“raw” data to generate a range 1 to 104 hefore placing
it in the queue.

2. In the ASCII mode, keys which are designated as
“STRINGS” will be actioned and not displayed. This
means that the corresponding string will be placed in
the queue.

Keyboard driver 3.4[17

34112

Special Keys

Certain keys in the down-code keyboard table are designated
special keys by setting attribute bit E hex to 1. In these cases
bits O - 7 specify the key type. These types have a specific
meaning to the Keyboard driver i.e. they act as switches.
Each type by default is associated with a key in one or more
of the normal, SHIFT and CTRL. The types and their
respective meanings are as follows:

00 reserved for spare keys - the driver takes no action
when these are encountered.

01 this type toggles the SHIFT LOCK and CAPS LOCK
driver modes and their respective LED’s. i.e.

- if in CAPS LOCK then clear lock and LED

-if in SHIFT LOCK then clear lock and LED

- if in CONTROL mode set SHIFT LOCK and LED
-if in NORMAL mode set CAPS LOCK and LED

02 noaction on Apricot F1 and Portable
03 no action on Apricot F1 and Portable
04 no action on Apricot F1 and Portable
0b sets/resets the STOP mode and LED

06 sets/resets CALCULATOR mode and sends start/stop
sequences to CALCULATOR.

07 this generates an F7 hex VOICE interrupt,

Refer to the default Keyboard table in Appendix B for
down-code designations of these keys. Under normal
circumstances these should not be changed.

The generic control device may also be used to invoke these
functions via software control. Refer to the Control Device
Chapter, Keyboard driver section and the command
“Get/Set Keyboard status”.

Keyvhoard driver

Default STRINGS

The default keyboard table has a number of pre-defined
STRINGS. These are invoked by special key combinations.
The STRINGS are located immediately after the end of the 3
sections of the down-code table.

These strings may be freely changed or re-designated as
required by the application. Note that the Example program
to add STRINGS to the list in an earlier section searched
from the end of the allocated table space until it found the
end of these default STRINGS. [t does not need to know
exactly where or what their size is.

The Default strings have been implemented to provide extra
facilities for the Keyboard, and the colour monitor.

The keys and their functions for the Portable are:

CTRL + F1 - 80 column Apricot compatible
mode on the LCD

CTRL + F2 - 80 column multi-colour

CTRL + F3 - 40 column mode on the LCD

CTRL + F4 - 80 column Apricot compatible

on the Display
CTRL + UP arrow -L.CD contrastup
CTRL + DN arrow -LCD contrast down

CTRL + Rarrow - Bell volume up
CTRL + L arrow - Bell volume down

SHIFT + UP arrow - Fast screen scrolling
SHIFT + DN arrow - Smooth screen scrolling

The keys and their functions on the F1 are: _
CTRL + F1 - 80 column Apricot compatible mode.

CTRL + F2 - 80 column multi-colour
CTRL + F3 - 40 column mode

CTRL + F4 -as CTRL + F1

CTRL + Rarrow - Bell volume up

CTRL + L arrow - Bell volume down

SHIFT + UP arrow - Fast screen scrolling
SHIFT + DN arrow - Smooth screen scrolling

Keyboard driver 3.4]13

Prefixes

Each entry in the down-code table has a facility to prefix the
data value of the key with an ESCape sequence. The two bit
prefix in the attributes has the following meaning:

00 - no prefix

01 - prefix with "ESC’ this facility is used with screen
control keys such as HOME, CLEAR and the arrow
keys. The character 1B hex (27 decimal} is prefixed to
a data character and placed in the queue.

10 - prefix with ‘/ESC'+ [’
‘ESC’ and [" prefix an ANSI sequence.
11 -is not used
Refer to the Keyboard Table in the Appendix for more details.

User Interrupt (F9 hex)

The Keyboard User interrupt {F9 hex) is invoked by the
driver prior to placing the decoded key character{s} in the
Receive Queue.

A copy of the data in the AX and BX register is passed to the
user interrupt with the following format:

Low byte = Received character (translated)

High byte = Count of the number of chars. This will be 1
for non-STRING keys. For STRING keys it will
be a count of the number of characters to
expect inclusive of the current low byte.

The User routine, unless otherwise initialised by the
Application, is a dummy routine which will return BX
unchanged and AX = OFFFF hex.

Applications may define a User interrupt to replace the
dummy routine. In particular this is useful for the handling of
“raw” down code data.

If the routine returns AX = OFFFF hex then the Driver places
the contents of register BL in the Queue.

If the routine returns AX = 0000 hex then the character is
ignored, i.e. thrown away.

Any translation or manipulation of the characters may take
place and be returned to the Keyboard driver in the BL
reqgister for subsequent addition to the queue.

3.4/14 Keyboard driver

ems interest

The Keyboard driver consists of various modules which
include the following functions:

1. Initialisation
2. Steering

clock set-up
time and date entry
raw code handling

3. Down-code handling
4. Queue handling
5. Configuration

The drivers are not directly accessible by applications
software. The correct use of them should always be via the
Control device.

In the following sections, each module is discussed to give an
overview of internal operation and to provide more detail
about certain Control device calls.

Initialisation

This module is executed by the Boot process and performs
the following:

zeroises and initialises queue

initialises S10 and keeps copy

Note: The Control device call to initialise only initialises the
gueue.

Keyboard driver 3.4[15

Steering

This module performs the function of receiving the data
from the SIO and filtering it to the appropriate routine. The
following steps are taken:

1. Is the data a Mouse packet?
Execute the Mouse interrupt 3. This interrupt handles
the Mouse packet completely.

2. SET TIME key pressed?
If the data is the SET TIME key then the 25th line of the
display is enabled. The Time/Date prompt is displayed
and the next 10 characters of input are assumed to be
in the format HH MM DD MM YY (with no spaces in
between). The clock within the keyboard is set to
this time.

3. TIME/DATE key pressed?
This key resets the clock implemented by the clock
driver with the current setting of the keyboard clock.

4. KB LOCK pressed? _
This key enables the user to lock the keyboard to
prevent accidental access. The key has a simple toggle
action; lock or., lock off. The driver also controls the
corresponding LED on the front panel according to the
LOCK status.

5. Normal XY keycode?
If the LOCK is on then ignore any key. If the XY codeis
80 hex or greater then it is ignored. The XY code is
translated into a down-code in the range O to 103. The
routine to handle normal keyboard codes is called.

6. RAW mode active?
If Fall-thru mode is on then the down-code is adjusted
to the range 1 to 104 and added to the gueue.

7. HELP key pressed?
If in RAW mode and the HELP ignore status is ‘off’ then
toggle reset the RAW mode off.

3.4/16 Keyboard driver

Down-code handler

This is the principle module of the Keyboard driver, It is
broken down into a number of sections.

The down-code is passed to the handler in the AX register
with the status in the high byte and the down-code itself
(with a value derived from the XY coordinates in the range O
to 103), in the low byte.

Firstly the down-code is used as an offset into one of the -
three sections of the active Keyboard table to produce one of
the following words:

DATA where bit 0-7 = ASCIl key data

bit 8 - 9 = prefix 00 none
01'ESC’
10 ESC'+T
11 'ESC'+'07

bitA = Local

bitB = CAPS LOCK

bitC = SHIFT LOCK

bitD = AUTO REPEAT

bitE = 0-not SPECIAL

bit F = 1-not STRING
SPECIAL where bit O-7 = type of special key

bit 8 -9 = Q0 - no prefix

bit A- D = 0000 - ignored

bitE = 1-SPECIAL

bit F = 1 - Non-string
STRING where bit O - E = 15 bit string pointer

bitF =20

If the CAPS/SHIFT LOCK mode is set on then down-codes
received in NORMAL mode whose corresponding entry has
CAPS/SHIFT LOCK enabled are vectored to the SHIFTed
area of the table.

Refer to the overview in this chapter for a definition of the bit
settings within each word.

Keyboard driver 3.4]717

The following sequence then takes place within the
down-code handler.

1. SPECIAL keys are filtered and processed to affect
keyboard status and LEDS as follows:

CAPS LOCKif in CAPS LOCK clear iock and LED

if in SHIFT LOCK clear lock and LED

if in CTRL mode set SHIFT LOCK/LED
if normal mode set CAPS LOCK/LED

STOP sets/resets keyboard status and LED
CALC sets/resets keyboard status

sends start/stop sequences to calculator
VOICE executes an F7 hex software interrupt

2. STRING and DATA keys are filtered and sent to the
destination prefixed as necessary. The only difference
heing that the for DATA only one character is sent.

The 15 bit string pointer is to a location in the table with
the following packet of data in bytes:

Length {in bytes 'n’}
Type (as in normal entry bits 8-15)
‘n” DATA bytes

If the Local bit is set then the datais sent directly to the
screen driver. If the screen driver is not active then the
data is ignored.

3.4/18 Keyboard driver

Queues

The Keyboard |/ O queue is an 80 byte circular buffer.

The Keyboard down-code handier passes the data generated
by each relevant key to the Queue handler.

The Queue handler performs an interrupt F9 hex, which is
described in the section on User interrupts on a previous

page.

If there is insufficient room in the Queue then the BELL. is
sounded and the data is ignored.

The Queue may be accessed directly through the Control
device.

The module consists of three distinct areas, they are:

1. Queue filler which adds one or more characters to the
Queue. This area is called by the down-code handler
and may also be called via commands 8 and D hex of
the Control device.

2. The “look-ahead” facility which will return the next
output character from the Queue without updating the
I/O pointers. Command C hex.

3. The Queue reader which returns one or more
characters from the Queue. Commands B hex and E
hex.

Keyboard driver 3.4/189

Configurator
This module facilitates modification of the Keyboard Status
and hence the way in which the Driver operates.

The Status may be altered directly by the Keyboard driver on
receipt of certain keys or it may be programmed via the
Control Device command F hex.

The Status byte has the following settings (bit = O, is OFF, bit

= 1is ON):
bit O = Ignore HELP key in Fall-thru mode
bit 1 = STOP
bit 2 = CALC
bit 3 = SHIFT LOCK
bit 4 = Fall-thru
bit 5 = VOICE LED (On Portable only)
bit 6 = LOCK

bit 7 = CAPS LOCK

The Control Device may be used to both interrogate the
Status and set it, simultaneously if necessary, by ANDing the
byte with a specific mask to determine the current settings
(typically with FF hex to return all status bits) and ORing with
another byte to reset Status bits

3.4/20 Keyboard driver

Apricot compatibility

The Keyboard table format, function and handling is exactly
the same on the generic range of Apricot Hardware.

The default size of the table is 1024 bytes divided into 3
sections, i.e. Normal, Shifted and CTRL; each of 104 words
with the remaining space being reserved for string keys.

The key numbers are the same with the following
qualifications:

1. The function keys F1 to F4, F6 to F10 are mapped onto
the original Apricot pc/xi fixed function keys HELP ...
FINISH (1.e. by legend rather than number. [n addition
the 97th entry is for Fb (VOICE),

2. In the default keyboard tables the function keys
produce the following codes:

Normal F1 (HELP) = 177
F2 (UNDO) =178
F3 (REPEAT) = 179
F4 (CALC) = 180
F5(VOICE) = 185
F6 (PRINT} = 181
F7 (INT) =182
F8 (MENU) = 183
FO (FINISH) = 184

SHIFT: F4 (CALC) activates the calculator
F5 (VOICE) activates VOICE on the Portable
FG (PRINT) activates hardcopy

CTRL F1(HELP) 80 Col Apricot compatible
(LCD on the Portable)
F2 {UNDQ) 80 Col colour
F3 (REPEAT) 40 Col mode
F4 (CALC) 80 Col Apricot compatible
(Display on the Portable)

The Membrane Keys (MicroScreen function keys) and their
respective entries in the table are not used.

The special keys TIME/DATE, SET TIME, KEYBOARD LOCK,
REPEAT RATE & RESET do not appear in the table. These
are filtered out from the XY codes passed from the
keyboard.

Kevhoard driver 3.4/27

Certain “Special Keys” are no longer supported.
They are:

02 - right hand shift

03 - left hand shift

04 - Control Key

07 - Microscreen echo toggle

One additional “Special Key” is supported, i.e.
08 - VOICE (generates interrupt F7 hex)

The default string table for the Apricot F1/Portable is
detailed in the section “Default strings™.

Despite these differences the standard Apricot Keyboard
Table may be used on the Portable and F1.

Configuration table

The section of the Configuration table reserved for the
Keyboard Driver is located at displacement 10 hex in the
table. It contains the following

Offset Function

G0 Key click volume (range O to F hex)

O = full/F = off
01 Auto-repeat master enabler
O = off/1 =on

02 Auto-repeat lead-in delay
1 to 255 times 20 ms

03 Auto-repeat interval of
1to 255 times 20 ms

04 Microscreen mode {Q = time & date)
(1 = screen echo})

05-0F spare

3.4/22 Keyboard driver

SapPooUMO(] "L 94nbiyg

FSaTe T «ma ms Ere] . Iy] - T —+ FILE TR fo
N T - S I 6 06) 48 L8
" . t / ’
g firy e Z N ol R - i < E W M 9 A o X 7 5
Yo) I] ! A oef &L B L oy Sep v £ 4 L
wlm ol =l — .0 Pl laole]als]v] =
0 £ S I S RS T i fof 2o i TG = s T S| s £g es
.]]
[SAIT s FEM K
) & 8 £ d O [n A 1 d 3 i 5] =
g G S e I I Y Vol Lo o 4 I 1 L) scf eo] sc 20 GE vE
. = - 0 & g L = g b £ & b .
% [L0% B R IS IR B *t-vc b - =] st= s Fb-1l=1:1v
5 [t SIS ISy IS) N 125 A WL sz ve £z i vZ 4 Y D) Y Lt T
MR ¥R LN L

O

3.4/23

Kevhoard driver

Contents

Overview

Applications interest
Configuring the Serial Driver
Generic differences
User Interrupts

Systems interest
Configuration table

Serial Driver 3.5[7F

Jverview

The Apricot Generic Serial [/O Driver provides asynchronous
communications support for the following devices:

RS-232
MOUSE

The Control Device interface provides facilities to configure
the Driver for different transmission speeds, line protocols etc.

Further, a call to the Control Device enables the Application,
in conjunction with User interrupt (FO hex), to switch control
of the RS-232 channel from the BIQS to itself. This is
described in the section on User interrupts.

The I/O port addresses and structure vary throughout the
Apricot range but this is transparent to Applications using
the Control Device. For Applications which access the
hardware directly the above call to the Control Device
provides details of the addresses and structure.

The RS-232 channel is switchable in the driver between
Serial Mouse and R$-232 communications.

The Serial Mouse, when enabled, is handled by User Interrupt
(FA hex). Details are described in the Mouse driver booklet.

The Applications section of this chapter details how to configure
the Serial 1/O Driver to the required Device and operational
environment. The Systems interest section provides details
of the configuration data governing the Serial Driver.

In RS-232 mode the Serial Driver may be configured
through the Control Device calls to provide the following
application environments:

Exclusive User interrupt control {FO hex)

BIOS control which includes:
XON/XOFF protocol
RTS/CTS protocol
DTR/DSR protocol

Applications which require transparent (i.e non-BI0S)
handling of the S10 are considered in the section “User
Interrupts”. Other applications, which are under BIOS
control are discussed in the next section Configuring the
Serial Driver.

3.5/2 Serial Driver

Configuring the Serial Driver

The calls to the Control Device provide the Application with
comprehensive facilities to configure the S10 serial interface
in ferms of protocol, transmission speeds, data format, etc.,
for asynchronous communications.

They also provide direct access to the control and status
lines of the SIO to enable the application to use any variation,
as required, of the standard line protocols provided. The
requirement for such direct access is inherent in the field of
communications. So many variations occur in external
devices and their protocol as to exclude them from the scope
of this chapter.

A common requirement in this field however is support of a
Serial printer. The Apricot generic BIOS is usually configured
to default printer output to the parallel Centronics interface.
The example given below demonstrates how to configure the
BIOS and switch to Serial printer communications.

The BIOS may be configured to Boot with the printer output
directed to the Serial port. The Label Sector must be set to
specify a Serial printer and the configuration data table must
be set to the required transmission characteristics of the
printer.

Alternatively in order to switch an existing Application
during Run time to use a Serial printer, the Serial Driver must
be configured to the requirements of the individual printer
using calls to the Control Device and then a further call to
the Control Device to disable parallel support and enable
serial.

The example provided below illustrates this procedure for a
printer with XON/XOFF protocol and the following option
settings:

Switchable XMIT/RCVE baud rates and data bits
Stop bits (1, 1.bor 2)
Parity (none,odd, or even)

Serial Driver 3.5/3

Example: Configuring a Serial printer

10 CLSS=CHRS$(27}+"E" 'clear screen escape seguence
20 DATA “NONE",“0DD","EVEN"
30FOR [=1to 3: READ PTYS{}): NEXT |
40DATA1,1.5.2
50FORI=1T0 3 :READ STOBIl) : NEXT |
B0 DATA 50,75,110,134.5,150
70 DATA 300,600,1200,1800,2400
80 DATA 3600,4800,7200,8600,19200
90 DIV BAUD(15): FOR1=1TO 15 : READ BAUD{[) : NEXT
100 PRINT CLSS;"Generai data:”
110 INPUT ” stop bits {1-3):"; RTS%
120 INPUT * parity (0-2). ", RTP%
130 PRINT

170 PRINT “XMIT parameters: ™

180 INPUT * baud rate (1-158) ", TXB%
190 INPUT “ data bits (5-8): ; TXD%
200 PRINT

240 PRINT "RCVE parameters:”
250 INPUT " baud rate {1-15) :"; RXB%
280 INPUT " data bits {5-8): ", RXD%

300 DEV%==8&H34 ‘Serial I/0 Driver
310 COM%=4:DAT%=TXB%:GOSUB 900 ‘set xmif baud

320 COM%=5:DAT%=RXB%:GGSUB 900 ‘set rcve baud

330 COM%=6:DAT%=TXD%:GOSUB 300 ‘set xmit data bits
340 COM%=7.DAT%=RXD%:G0SUB 900 ‘sef rcve data hits
350 COM%=8:DAT%=RTS8%:GOSUB 900 'set stop hits

360 COM%~=9:DAT%=RTP%:GOSUB 900 ‘no parity

370 COM%=&HA:DAT%=1: GOSUB 900 ‘enable xon/xoff xmit
380 COM%=3:G0SUB 900 ‘now set Serial Briver

390 DEV%=&H35:C0M%=6:DAT%=1.G0SUB 300 ‘select serial printer
400 LPRINT "Serial printer test; "

410 LPRINT

420 LPRINT “xmit baud rate " BAUD({TXB%)

430 LPRINT “rcve baud rate “ BAUD{RXB%)

440 LPRINT “xmit data bits “ TXD%

450 LPRINT "rcve data bits “ RXB%

460 LPRINT "stop bits” STOB{RTS%)

470 LPRINT “parity” PTYS(RTP%+1)

490 END

900 DEF SEG=&HB0:10=0:RET%=0:CALL IO(DEV%,COM%,DAT%,RET%):
RETURN

Reference to the Control Device chapter will provide details
of the calls used in the program.

3.5/4 Serial Driver

[t is important to note the order of the call in statement 380.
All the previous calls simply set up the configuration table
which is detailed later in this chapter. Statement 380
actually re-programs the Serial Driver and the S10O.

Printer output is assumed to be directed by default to the
Parallel Device driver. Statement 390 switches output to the
Serial Device driver and updates the Configuration table.

All printer output within the program is then directed to the
Serial Device. Provided that no other commands are given
this condition will remain on exiting the program and BASIC.
This means that all other output from applications through
MS-DOS will also be directed to the Serial port.

This is easily demonstrated by use of the CTRL P command
in MS-DOS. i.e.

A=>CTRLP
A=DIR

will direct all screen output to the currently selected printer
device.

A= CTRL N will cancel the CTRL P

it is important to note that the changes to the Configuration
table in RAM will remain active until a cold BOOT is invoked.
Applications which require to re-instate the Driver to it's
former condition should temporarily store the Serial Driver
configuration and then restore it as necessary.

Further, the XON/XOFF codes as defined in the
Configuration table may not be compatible with the external
device. If this is so then these may be altered within the
configuration table. The procedure to achieve both of the
above points is detailed in the section below on the
Configuration table.

Statement 370 enables the XON/XOFF control of the
transmit routines within the driver, i.e. receipt of XON/XOFF
characters from the external device will restart/suspend the
transmission procedure.

Serial Driver 3.5(5

Generic differences

The Apricot generic Serial Driver provides the same support
on the F1 and the Portable with the exception of a limitation
in the F 1 transmission rates.

The F1 does not support split rates of transmit/receive. Care
must be taken in ensuring that the transmit/receive baud
rate are specified equal.

In addition the F 1 does not support 3600, 7200 and 19200
baud. Any attempt to specify one of these rates results in the
next lower rate being used, i.e. 2400, 4800 and 9600
respectively.

The Hardware |/ O addresses and port structures are
different in the F 1 and Portable, however this is catered for
automatically by using the Control Device.

A Control Device call provides the application with full
details of the Hardware configuration. This is detailed in the
next section.

User Interrupts

The Serial Device driver can be switched between:
BIOS control, and
User interrupt control (Int FO hex).

The use of User interrupt control is limited to applications
capable of accessing the 8086 and 280 SIO registers.
Details given below therefore relate only to machine code
level. (For low level details of the Z80 SI0, refer to the Serial
Interface chapter in the Hardware section).

The selection of User Interrupt control is achieved by the
Control Device call 1A hex “Set/Reset external SIO control”.

This call returns the SI0 I/Q addresses and structure in the
PX parameter (AX register).

3.5/6 Serial Driver

Al is the base I/0 port address, which relates to the
following offsets:

{base + 0] = Channel A data
[base + 2] = Channel A status
[base + 4] = Channel B data
[base + 6] = Channel B status
AH defines the RS-232 channeil:

0O = Channel A
1 = Channel B

The hardware chapters provide a detailed description of the
510 registers and how to access them.

Subsequent interrupts on the RS-232 channel are filtered
and the interrupt FO hex is invoked with the AX register
containing “000x” which is a vector to one of the 8
conditions as given below.

For the F 1 the possible settings are:

O = Ch B TX buffer empty
2 = Ch B External Status int
4 = Ch B RX ready

6 = Ch B Special receive
For the Portable the possible settings are:

8 = Ch A TX buffer empty
10 = Ch A External Status int
12 = Ch A RX ready
14 = Ch A Special receive

The user interrupt routine handles the call as required. The
nature of the interrupt is given below:

TX buffer empty - SIO ready for next character

External/Status - Line interrupt CTS/DSR etc
interrupt

RX ready - 510 has received a character
Special Receive - Error in device receive channel.

Serial Driver 3.5]7

Systems interest

Configuration tahle

The block entry for the Serial Device driver begins at location
0030 hex within the configuration table and is of the
following format:

Offset Function Comment

0000 TX baud rate. Range 1- 15 dec. Note 1.
0001 RX baud rate. Range 1- 15 dec. Note 1.
0002 TX data bits. Range b - 8.

0003 RXdata bits. Range b -8

0004 Stop bits. 1=1,2=15,3=2.

Q00% Parity check. O = nocheck, 1 = check. Note 2.
0006 Parity type. 0 = none, 1 = odd, 2 = even.
0007 TX XON/XOFF protocol. O = off/1 = on.

0008 RX XON/XOFF protocol. 0 = off/1 = on.

0009 XON character code. Default DC1 {11 hex).

Q00A XOFF character code. Default DC3 (13 hex}.

Q00B XON/XOFF RX bufferlimit. Note 3.

000D DTR/DSR protocol. 0 =off/1 =on.

000E CTS/RTS protocol. 0 = off/1 = on.

O00OF Number of nulls after CR.

0010 Number of nulls x 10 after FF.

0011 Auto LF after CR. 0O = off/1 = on.
0012 reserved.

Notes:
1. Refer to Control Device.
2. The Parity check entry is not used.

3. The number of bytes before end of RX buffer. When
the buffer fills to this point then an XOFF is transmitted.
When it drops below this point then XON is
transmitted.

The entries are modified from time to time by calls to the
Control Device as can be seen in the example above.

3.5/8 Serial Driver

If the application requires this table to be switched back to its
original BOOT state following calls to the Control Device, it is
essential that a copy is taken before modification. This is best
achieved by making dummy calls to the Control Device
GET/SET functions which return the current settings.

The Configuration table may be accessed freely but should
only be altered with the generic Control device calls. One
exception is the modification of the XON/XOFF characters.
In certain cases the external device may send different
character codes to represent XON/XOFF. The Application
program must cater for these instances. An example of how
to locate the configuration table and modify this entry is

given below.

Example: Changing the XON/XOFF characters
100 DEF SEG=&H70 ‘seqment for Config pointer
120 CS=PEEK(2}+{256*PEEK{3}) ‘Config segment

130 CO=PEEK(0}+(256%PEEK{1)} " pffset

140 DEF SEG=CS ‘define segment

150 XON=PEEK{CO+&H39) ‘pick up default XON

160 XOFF=PEEK(CO+&H3A} ‘XOFF

170 POKE CO+&H39,8H1 ‘new XGN=1

180 POKE CO+&H3A &H3 ‘new XOFF=3

The example picks up the pointer to the Configuration Table
from the pointer area in RAM and saves the existing values.
(Statements 120 -160). A new character for both XON and
XOFF is then placed in the table. {Statements 170 and 180).

The Serial Driver, if invoked for XON/XOFF protocol, will
subsequently use these two characters to filter off the
devices XON/XOFF characters.

Serial Driver 3.5/9

Overview

The Parallel i/0 Driver provides support for the Centronics
output port.

Applications Interest

Facilities are provided through the Control Device for
MS-DOS and Application use.

The Driver supports the BUSY line only.

After Booting the system printer output is directed to the
default device {either Parallel or Serial) as specified in the
configuration data in the Label Sector.

A switch is available within Control Device calls to toggle
between Parallel and Serial.

A 2K byte buffer is used by the Parallel Driver. If printer
output is switched to Serial then the Parallel buffer is
appended to the 512 byte Serial Auxiliary transmit buffer.

The Control Device also provides a call for Auto LF after CR
setting.

Systems Interest

The following data is held at offset 50 hex in the
configuration table:

Offset Function

Q000 auto LF after CR{O = off, 1 = on)
0001 not used

0002 not used

0003 not used

0004 BIOS error report (O = off, 1 = on)
000b 11 spare bytes reserved

Parallel Driver 3.6/ 1

Overview

The Clock Driver provides the following facilities:
An internal date/time clock
A scheduler for use by peripheral drivers
A User interrupt (FF hex)

The BIOS support via the Control Device consists of three
calls, they are:

initialise, which resets the date/time clock to 00:00:00 on
the 1st January 1980.

Read the date/time
Set the date/time.

The User interrupt FF hex provides Applications with a
timing facility if required,

Applications interest

The Clock Driver generates a Clock interrupt {User interrupt
FF hex) every 20ms.

Applications which require a timing facility must provide an
interrupt routine and modify the Software interrupt vectors
to point to it.

Refer to the Guide to the BIOS chapter, section Software
interrupts, for details of how to install a User interrupt
routine.

In addition the following rules govern the use of the Clock
interrupt:

The routine must not last more than 10Oms.

The User routine must ensure that the SS, DS and ES
registers are preserved.

The routine must not change the Stack unless it disables
interrupts.

Calls to either the BIOS or MS-DQOS are not allowed.

Clock Driver 3.7]7

&rad

Systems interest

The Clock Driver maintains a System Date/Time clock
relative to midnight on the 1st January 1980 to an accuracy
of 2 hundredths of a second.

In addition it provides certain internal facilities for
peripherals. These are:

Pre-Boot arrow flash and countdown

Sound driver timeout

Floppy and Winchester head select and movement timing
Printer character output timeout

On Booting the Apricot, a timeout is performed for 10 secs
to enable the operator to change the setting of the
keyboards internal battery powered clock.

At the end of the timeout automatic Booting takes place if a
Bootable disk is present. In this case the System clock is not
updated and reflects the time from the initialise default as
stated above.

When the TIME/DATE key is pressed the System Clock is
always updated from the Keyboard ciock.

If the machine is still in the pre-Boot stage then an attempt to
Boot takes place.

The internal keyboard clock may be changed at any time by
pressing the “Set Time"” button and then entering a new time
and date as prompted on the bottom line of the screen.

Note: The time and date is input without any separator
characters. The Clock Driver is not updated unless the
“TIME/DATE" key is pressed.

The Clock interrupt handler performs all functions necessary
to maintain the system clock and all the calls necessary for
peripheral timer routines. It then invokes User interrupt FF
hex before returning.

The Configuration table does not hold any data related to the
Clock driver.

3.7/2 Clock Driver

Overview

The Sound Generator hardware within the Apricot family is
used by the Sound driver to produce the following:

Key click
Bell
Volume, Frequency and Period setting

Calls are provided through the Control Device for these
facilities.

Applications Interest

In order to produce more complex Sound features such as
music, the hardware must be accessed directly by the
Application,

The Hardware section describes in detail how to access the
Sound Generator directly.

Systems Interest

In conjunction with the Keyboard driver, the Sound driver
produces a Key Click whenever a key is detected as having
been depressed. This is important from the point of view of
using infra-red keyboards. [f the signal is not detected when
a key is pressed, a Key Click is not generated.

It thus acts as an indication to the user of correct/incorrect
positioning of the Keyboard relative to the Systems Unit.

Sound Driver 3.8/1

Contents

Overview
Applications interest

Non-MSDOS systems
Drive types

Label Sector
MS-DOS format

Disk format

Disk Swapping

Systems interest
Configuration data

Disk Driver 3.9/ 7

Uverview

The Disk Driver provides all functions for low level access of
the Disks required by MS-DOS.

The Control Device calls to both Floppy and Winchester are
designed to provide support at Operating System level only,
i.e. for implementation of MS-DOS and other Operating
Systems {OS).

Under normal circumstances all other Applications should be
limited to use of the OS calls themselves and should NOT
access the Control Device directly, unless otherwise stated in
this chapter.

There are some exceptional cases. For example, the
detection of “"Disk swapped” is of importance to many
Applications. Here the facilities are freely available within the
Control Device. However they must be used with care. Refer
to the section Disk swapping and to the Control Device
chapter for the exact course of action to take.

The Disk Driver and Control Device support a number of
different drive types and mixed combinations of Floppy and
Winchester. Some drives however are hardware options. For
full details, refer to the Hardware section.

The format of Disks is considered at two levels, i.e. Hardware
physical format and Software MS-DOS format. Software
"hooks™ are provided within the BIOS to format a Floppy.
Utilities are provided with the system software to perform
this function for MS-DQS. Applications which require
specific formatting should refer to the Hardware section.

The MS-DOS format is provided for completeness only. It
depicts the actual layout of reserved areas on the disks,
especially BOOT disks. The "actual’ format of any one Floppy
or Winchester is defined in the Label Sector. Reference to
the Guide to the BIOS chapter together with the appropriate
MS-DOS manuals will provide full details.

3.9/2 Disk Driver

Applications interest

Non MS-DOS systems
These applications are considered to be the implementation
of other Operating Systems, for example CP/M.
The Control Device provides the facilities required to:
Detect the drive type
Format Floppy
Read/Write/Verify/Read + Verify sector(s)
Return disk status
Set/detect disk swapped

Return the BPB (BIOS Parameter Block) of a specified
disk

The ROM Boot routine expects certain data within the Label
Sector and minimum data in the BPB (refer to Label Sector
section in this chapter and the Guide to the BIOS chapter).

Further items should be taken into account when preparing
a Bootable disk:

The default printer device is selected from Label Sector
offset 83 hex as the Parallel or Serial port.

The screen line (i.e. 200 or 258) and column ({i.e. 40 or
80) mode is determined from the Labe! Sector offsets AQ
and A1 hex respectively.

The Serial port is pre-defined in Label Sector offset BO to
CF hex.

Other sections of the Label Sector may be required to be
preset but are not vital to the Boot procedure and will be OS
dependant.

Disk Driver 3.9/3

Drive types
The following drives are supported by the BIOS and Control

Device:
Floppy : 70 Track SS
80 Track SS {not currently used)
80 Track DS
Winchester : b Megabyte
10 Megabyte

20 Megabyte (not currently used)

Up to 4 disks may be connected at any one time to the
Apricot. Combinations of Floppy and Winchester are
supported up to a maximum of 2 drives each.

Refer to the Hardware section for details of available
options.

As mentioned in the MS-DQOS section later the layout of a
disk varies according to the Cluster {or allocation units) size.
A Cluster is the smallest unit of the disk which is allocated to
any file or reserved area on the disk.

The Cluster size is designed to use the disk as efficiently as
possible and in general becomes larger as the capacity of the
disk increases.

3.9/4 Disk Driver

Lahel Sector

The Label Sector is the first physical sector on the Disk, i.e.
Track O Sector 0. It has alength of 512 bytes.

The format of the complete sector is described in the chapter
Guide to the BIOS.

The first 80H bytes of the Label Sector contain data relevant
to OS Booting and Disk Configuration in the form of a BPB
(BIOS Parameter Block). It provides the BIOS with a
description of each disk (whether a Bootable Disk or not).

The BPB for each loaded disk is held in an array table in the
ROM specified RAM. The Pointer area maintains a pointer to
the Floppy and Winchester BPB array tables.

The BPB has the following format:

** WORD sector size in bytes
* BYTE sectors per allocation unit
WORD number of reserved sectors
BYTE number of FAT's
WORD number of directory entries
++ WORD total number of sectors
BYTE Media descriptor byte: FCH = 70 S§
FDH = 80 SS
FEH — 80 DS
F8H = 5 megabyte
FOH = 10 megabyte
FAH = 20 megabyte

WORD sectors per FAT
* BYTE disk type: 70 track SS
80 track SS
80 track DS
5M winchester
10M winchester
2

OM winchester

I I | L F |

RWN—-Q

WORD Reserved
Notes:

#* These parameters are mandatory for the BOOT
routines.

* This parameter must be non-zero.
All other parameters are OS specific, in this case MS-DOS.

Disk Driver 3.8/5

MS-D0S format

The reserved part of each BOCOT disk is as follows:

R

Label Sector —
FAT 1

FAT 2 . on all disks

Directory

Character FONT's
Keyboard Table
| MS-DOS Boot disk
BIOS/SYSINIT only
MS-DOS

Only one 512 byte sector on the disk is specifically reserved
and that is the first physical sector - the Label Sector.

All other information above is expected to be on the MS-DOS
BOOT disks.

3.8/6 Disk Driver

The location of each of the above is determined from data
within the Label Sector itself.

The size of each section varies according to the Release of

Software and to the cluster {or allocation) unit size of the
disk.

MS-DOS 2.11 is about 17K whereas MS-DOS 3.0 is about
28K bytes. The cluster size for Winchester is bigger than for
Floppy etc.

For example, the Keyboard Table is 1K on the Floppy Boot
disks and 4K on the Winchester 5 megabyte. Only 1K is
loaded into the Memory (and therefore the Map given in the
Guide to the BIOS is always correct.)

Preparation of a Boot disk for other Operating Systems
involves setting up the Label Sector exactly as required by
the ROM BIOS Bootstrap routines.

Disk Driver 3.8(/7

Disk Formats

The Control Device provides facilities for formatting Floppy
disks but there is no support for Winchester.

Formatting of a Winchester must be handlied by Application
or System Software alone. The BIOS does however
reference a flag in the configuration table which enables or
disables a Winchester park flag. {Refer to the Guide to the
BIOS chapter 00 for details - Label sector offset EE hex).

The BIOS checks the Winchester for activity every b secs
and if there has been no activity then the driver moves the
heads to the last data track.

This is to protect the data tracks at the beginning of the disk
if there is an inadvertant fault. This flag ensures that the
BIOS does not park the heads during the format procedure.

For details of the actual physical format refer to the relevant
Hardware section.

Disk Swapping

The Disk driver has a background “Demon” which monitors
the condition of the drives every 2 seconds to see whether
the disk is present.

The “Demon” assumes that a disk cannot be swapped faster
than this.

A number of calls are provided in the Control Device to
support disk swapping. If used, however, care must be taken
to ensure that MS-DOS or applicable OS are aware of the
present state.

Use of the Control Device call 0009 hex (check if disk in
drive x swapped) results in the BIOS flag being reset. An
application making this call should therefore restore the flag
to its setting if necessary by immediately calling Call O006H.

If MS-DOS detects a disk as swapped then all internal buffers
etc related to it are flushed.

A further call is available in the Control Device to obtain the
BPB of a disk in a specific drive.

Systems software should invoke this call following a disk
swap to obtain correct disk information.

3.8/8 Disk Driver

Systems interest

Configuration data

The configuration data for disks is located in two sections of

the Label Sector.

The first 80 hex bytes of a Label Sector provide BOOT detail

(where applicable) together with a BIOS Parameter Block
(BPB). It is important to note that the BPB also contains
information vital to the BOOT procedure - refer to Label
Sector section.

Further data is to be found in the Label Sector, which is
related to the Winchester only, the offsets and data are as

follows:

Offset Field Bytes Use

QOEO 14 spare

OOEE CNF_wini__park 1 parking enable flag
(O = on, nz = off)

Q0EF CNF__wini__form 1 format protection
(O = off, nz = on)

0100 WIiNbad__sect 64 Up to 32 words giving
logical sector numbers of
bad blocks on the disk

0140 WIiNvol_bpb1 16 Extended BPB for volume 1

0150 WINvol_bpb2 10 “ “o" yol 2

0160 WIiNvol_bpb3 16 vol 3

0170 WINvol__bpb4d 16 vol 4

0180 WINvol__bpbb 16 i “ " yol B

0190 WINvol_bpbb 16 vol 6

01AO0 WIiNvol__bpb7 16 “r vol 7

01BO WINvol__bpb8 16 ‘ " vol B

A non-dedicated area of label sector starting at offset
100H is used for Winchester disk bad block tables and

reserved for Multi-volume BPB's.

Disk Driver 3.9/9

Configuration data for each Floppy and Winchester known
to the system is loaded into RAM and may be referenced by
the Pointer table in ‘ROM specified RAM', as follows:

Address Length Setby Use
(bytes)
408H 2 BOOT Drive booted from:
OO00H = Fioppy O
O001H = Floppy 1
0002H = Winchester 1
0003H = Winchester 2
40AH 4 BOOT Pointer to loaded boot
disk header sector
40EH 4 BOOT Reserved
412H 2 BOOT Reserved
414H 1 BOOT W.inchester type:
0 = No Winchester
3 = b Megabyte RO35 1
Winchester
4 = 10 Megabyte RO3562
Winchester
5 = 20 Megabyte
Winchester
415H 1 BOOT Floppy type:
0 = 70 track SS
1 =80 track 8S
2 = 80 track DS
416H 1 BOOT Number of Floppy Drives
417H 1 BOOT Number of Winchester
Drives
418H 4 BOOT Pointer to Floppy BPB
array Table
41CH 4 BOOT Pointer to Winchester

BPB array Table

3.8/10 Disk Driver

Contents

QOverview

Applications interest
Displays
input Devices
Calling GSX
Additions to GSX 1.3

Systems interest
System files

GSX 3.10/171

Uverview

All graphics devices are inherently different. Displays,
plotters and printers are all capable of drawing lines, filling in
areas and producing various forms of text. They often
achieve each function in a unique way, which implies that the
software controlling these devices is never compatible.

Graphics System Extension (GSX) is a support package
which provides Applications with a standard interface to
graphics devices.

The GSX package consists of two major components, they are:

GDOS - Graphics Device Operating System from Digital
Research

GIOS - Graphics Input QOutput System

The GIOS is a device driver which is loaded by GSX to
perform the unique features of the individual screens.

A GIOS is required for each different screen resolution used
in the system.

GSXloads one GIOS at a time, commencing with the default
GIOS (refer to Systems interest). If the Application requests,
another avaitable device driver can be loaded instead.

GDQOS and the Application communicate with a set of
commands which relate to a Normalised coordinate space in
the range 0- 32787 on an X and Y axis. GDOS scales the
coordinates according to information provided by the
resident GIOS device driver when it is installed.

For details on how to install and use Graphics System
Extension refer to Digital Research’'s GSX-86
Programmer’s manual.

The Applications interest section of this chapter details how
to call GSX functions. A number of additional functions have
been included in the GIOS device drivers for the GSX-86
Release 1.3 on all Apricots. These implement, as closely as
possible, new functions for GSX-86 Release 2.0 together
with some ACT specific functions.

The Systems interest section details the various options
implemented within the GIOS and how to install them.

3.70/2 GSX

&)
et
G
=

23

-
o

Display features

e

e

bt
m
(W20
e

For a complete description of the Application interface to
GSX, you should refer to the GSX-86 Programmers manual.

The implementation of the GIOS for the Apricot Portabie and
F 1 Displays has the following features:

Line attributes:

Marker attributes:

Text attributes:

7 line styles:

1 - Solid

2 - Long dash
3-Dot

4 - Dash dot

5 -Dash

6 - Dash dot dot
7 - User defined

1 line width (1 Pixel}
b markers(1tob,i.e. +%.0x)

Size: 1 - n{where n = veriical
resolution i.e. 200/256 scan
lines)

2 character fonis:

BLOCK the current Master font as
selected in the pointer
table. The height is fixed
according to the font, i.e. 8
or 10 pixels.

STROKE a line drawing font based
upon coordinate points.
The height is limited by the
number of Display lines.

Rotation in multiples of 1 degree.
{(for STROKE oniy).

GSX 3.10/3

Fill attributes:

General Drawing

Primitives:

Colour:

3.70/4 GSX

Portable:

F1

4 interior styles

O - Hollow
1 - Solid
2 - Pattern
3 - Hatch

4 types:

Arc

Pie Slice
Circle
Bar

All radius specifications assume
an extent {distance) in the x-axis.

640 x 200 LCD monochrome
640 x 200/256 4 colour

640 x 200/256 8 colour
640 x 200/256 16 colour

1 640 x 200/256 4 colour

320 x 200/256 16 colour

The default colours are as follows:

O Black

1 White

2 Red

3 Green

4 Blue

5 Cyan

6 Yellow

7 Magenta

8 Grey

9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Brown
15 Low-intensity White

Input devices

Input Locator: the input Locator is either:

1. Mouse, or
2. Keyboard cursor position keys

Input Valuator: the Valuator maintains a continuous
count of the depression of the -+
and ‘—" keys. The increment is 1
unless a numeric key is pressed - in
the event the increment becomes the
value of the key pressed. Any
non-numeric key will terminate input.

Input Choice: a value in the range O to 99 may be
entered. If a single digit is entered
then terminate input with any
non-numeric key.

Input String: a string of characters terminated by
carriage return.

Escapes: all Escape Op codes are implemented.
Cell arrays: Cell array display is implemented.
Cell array inquiry is NOT implemented.

GSX 3.70/5

Calling GSX

A detailed description of the commands, parameters and
method of calling the GDOS is given in the GSX-86
Programmer’s manual.

The actual Call procedure is summarised below for
Application interest:

There is only one Call to the GDOS via interrupt EQ hex with
the following register settings:

CX -0473H Function code

DS:DX - Segment:Offset pointer to a parameter
block which contains the following five
double word Segment:Offset pointers:-

PB control array

PB + 4 input parameter array

PB + 8 input points array

PB + 12 output parameter array

PB + 16 output points array
The next section describes the specific changes for features
implemented to conform to GSX-86 Release 1.3 and some
additional ACT specific features.

The notation used in the GSX-86 Programmers manual is
adopted in the calling sequences outlined in the next
section, i.e.

contrl{x) - the control array of x integer elements
intin{x) - the input parameter array

ptsin{x) - theinput coordinate points array
intout(x) - the output parameter array

ptsout(x} - the output coordinate points array

3.70/6 G&X

Additions to GSX 1.3
A number of additional functions are included within the
GSX Release 1.3 for all Apricots.

These are mainly to conform with GSX-86 Release 2.0
specification although a few are specifically ACT functions.

Note: These additions will not necessarily be supported by
ACT in future releases and are included in this manual for
completeness only.

1. Set user defined line style
. Bit block move (ACT only)
. Set fill interior style
. Set fill perimeter visibility
. Exchange fill pattern
Fill rectangle
. Exchange mouse form
. Show cursor
9. Hide cursor
10. Sample mouse button states
11. Prestel operations (ACT only)

These functions together with their specific calling
procedures are detailed in the remainder of this section.

0N OE WN

Set user defined line style

This function sets the current user-defined line style pattern
word in the device driver to the value in the specified pattern
word, 16 bits.

The most significant bit (MSB) of the pattern word is the left
most pixel displayed. This line style is used for subsequent
polyline operations when the application selects user-defined
line style, index 7.

Input

Contri(1) - Escape opcode = 5
Contri{2) - Number of input vertices = 0O
Contri{8) - Opcode = B2

intin{1) - User line style
QOutput
Contri{3}-0

GSX 3.70/7

Bit Block Move (ACT specific routine)

A facility has been provided for moving bit aligned blocks of
data between the display and memory, using the standard
GSX interface.

The routine is an escape operator with function code of 51.

Input
contri{1) -Escapeopcode =5

contrl{2) - Number of input vertices = 10
contrl{4} -4

contrl{6) - Function code =51

contrl(/} - Offset of dest. bitmap

contri(8) -Seg. of dest. bitmap
contrl{8} - Offset of srce. bitmap
contrl{ 10) - Seg. of srce. bitmap
contrl{ 11} - Offset of pattern
contrt(12} - Seg. of pattern
contri{ 13} - Raster operation

intin{1) - Dest. bitmap type
intin{2) - Srce. bitmap type

ptsin(1) - Dest. origin x

ptsin(2) - Dest. originy

ptsin{3} - Srce. origin x

ptsin{4) - Srce. originy

ptsin{b) - Extentin x direction

ptsin(G) - Extentin y direction

ptsin{7} - Dest. bitmap width in NDC units
ptsin(8) - Dest. bitmap height in NDC units
ptsin{9) - Srce. bitmap width in NDC units
ptsin{ 10} - Srce. bitmap height in NDC units

Output
contrl{3) -0
intout{1) -0 : No errors detected

- Hlegal source description

: lllegal destination description
: llegal rasterop requested

. lllegal extent in x direction

. [llegal extent in y direction

IR WN =

3.70/8 GSX

The following assumptions are made:
All clipping is done by the application.
Source and destination rectangles are the same size.

Patterns are specified as 8 adjacent bytes with bits
organised with the most significant bit displayed first.

If an address parameter is not required nothing need be
passed. An address need not be supplied for the display.

All parameters are left unchanged.
Note: The source and destination rectangles may overlap.

Set Fill Interior Style

This function sets the fill interior style used in subsequent
polygon fill operations. If the application requests an
unavailable style, the area is hollow filled. GSX returns the
selected style to the application. Hollow style fills the interior
with the current background colour, index 0. Solid style fills
the area with the currently selected fill colour.

Input

contrl{O} Opcode = 23

contri(1} Number of input vertices = O
contrl{3} Length of intin array = 1
conirl{@) Device handle

intin{0) Request fill interior style

0O - Hollow

1 - Solid

2 - Pattern

3 - Hatch

4 - User defined style

Output __
contrl{Z2) Number of output vertices = O
contrli{4) Length of intout = 1

intout{O) Fill interior style selected

GSX 3.70/9

Set Fill Perimeter Visibility

This function turns on or off the outline of a fill area. When
visible, (the default at Open Workstation for this function),
the border of afill area is drawn in the current fill area colour
with a solid line. When invisible, no outline is drawn. Any
nonzero value of the visibility flag causes the perimeter to be
drawn.

Input

contri{Q} Opcode = 104

contrl{1) Number of input vertices = Q
contrl{3) length of intin array = 1
contrl{6} Device handle

intin(0) Visibilty flag
zero invisible
nonzero visible

Output

contrl{2) Number of output vertices = 0
contri{4) Length of intout array = 1

intout{0) Visibility selected

Exchange Fill Pattern

This function redefines the user-definable fill pattern and
returns the old user-definable fili pattern definition. The
inputs to this routine are two long pointers. The first points
to a Fill Pattern Definition Block {FPDB), which defines the
new fill pattern, The second points to a FPDB that will be
overwritten with the old fill pattern. If the second pointer is
zero, the old FPDB is not returned.

The format of a FPDB is shown below.

Reserved for future
use, must be 1

Reserved for future
use, must be 1

Reserved for future
use, must be O

16 bits by 16 bits
of pattern data

3.70/70 GSX

For the pattern data, bit 15 of word 1 is the upper left hand
bit of the pattern. Bit O of word 16 is the lower right hand bit
of the pattern. Bit O is the least significant bit of the word.

A bit value of 1 indicates foreground colour and a bif value of
0 the background colour. The colour used for the foreground
is determined by the current fill area colour index.

The defined pattern is referenced by the Set Fill Interior
Style function as style 4 and in the Fill Rectangle function.

Input

contrl{O) Opcode = 112

contrl{ 1) Number of input vertices = 0O

contrl{3) Length of intin array = O

contrl{G) Device handle

contrl{7 -8} Double word address of the user defined

fill pattern

contrl(9 - 10) Double word address of the area to copy
the old fill pattern

QOutput
contri(2) Number of output vertices = 0
contrl{4) Length of intout array = O

GSX 3.70/77%

Fill Rectangle

This function fills a rectangular area with the pattern defined
with the Set Fill Pattern function. The rectangle is filled using
the writing mode specified in intin(0).

Input

contri(Q) Opcode = 114

contrl{ 1) Number of input vertices = 2
contri(3) Length of intin array = 1
contrl{6) Device handle

contr}{7-8}) Double word address of the destinations
memory form definition block (Not
implemented, physical display assumed)

intin{0) Writing mode

ptsin(O} X-coordinate of upper left of destination
rectangle in RC/NDC

ptsin{ 1) Y-coordinate of upper left of destination
rectangle in RC/NDC

ptsin(2) X-coordinate of lower right of destination
rectangle in RC/NDC

ptsir{3) Y-coordinate of fower right of destination

rectangle in RC/NDC

Qutput

contri{2) Number of output vertices = 0
contri(4) Length of intout array = 0

3.70/12 GSX

Exchange Mouse Form

This function redefines the cursor pattern displayed during
locator input or any time the cursor is shown {see Show
Cursor function), and returns the old cursor definition. The
inputs to this routine are two long paramaters. The first
points to a cursor definition block which is to be used as the
new cursor. The second points 1o a cursor definition block
which will be overwritten with the old cursor definition
block. If the second pointer is zero, the old cursor definition
block is not returned,

Format of Cursor Definition Block

X-coordinate of hot spot
Y-coordinate of hot spot
Reserved, must be 1
Colour Index

Reserved, must be O
18 by 16 bit of cursor mask
16 by 16 bit of cursor data

For the cursor mask and data, bit 15 of word 1 is the upper
left hand bit of the pattern and bit O of word 16 is the lower
right bit of the pattern. Bit O is the least significant bit (LSB)
of the word. A bit value of 1 indicates foreground colour and
a bit value of O indicates background colour. The colour used
for foreground colour is determined by the colour index.

The hotspot is the location of the pixel (relative to the upper
left corner of the cursor) that lies over the pixel whose
address is returned by the input locator function.

The cursor is drawn as follows:

The data under the cursor is saved so it can be restored
when the cursor moves.

The mask is ANDed with the data on the screen.

GSX 3.10/713

The cursor data is XORed with the result of the previous
step and displayed on the screen.

Input

contrl{Q) Opcode = 111

contrl{ 1} Number of input vertices = O
contrl(3)} Length of intin array = O
contrl{6) Device handle

contrl{7 - 8) Double word address of the new cursor
definition block

contri{9 - 10} Double word address to receive the old
cursor definition block

Output
contrl(2) Number of output vertices = O
contrl{4) Length of intout array = O

Show Cursor

This function displays the current cursor. The cursor moves
on the display surface based on information input from a
mouse or the cursor control keys.

The Show Cursor function and the Hide Cursor function are
closely related. Once the cursor is visible, a single Hide
Cursor causes the cursor to disappear. GSX maintains the
number of times the Hide Cursor function is called. The
Show Cursor function must be called the same number of
times for the cursor to reappear. For example, if the Hide
Cursor funiction is called four times, the Show Cursor
function must be called four times for the cursor to
reappear.

However, the Show Cursor function provides a reset flag in
intin{0). If intin{Q) is zero, the cursor appears on the screen
reguardless of the number of Hide Cursor calls. A nonzero
value for intin{0) affects the Show Cursor function as
described in the previous paragraph.

3.70/14 GSX

Input

contrl{Q) Opcode = 122

contri{ 1) Number of input vertices = O
contri(3} Length of intin array = 1
contri(6) Device handle

intin{0) Resetflag

0 = ignore number of hide cursor calls
nonzero = normal show cursor behavior

Output

contrl{2) Number of output vertices = 0
contrl{4} LLength of intout array

Hide Cursor

This function removes the cursor from the display surface.
This state is the default condition set at Open Workstation.
The cursor can appear in a new position when the application
calls the Show Cursor function because GSX updates the
position based on information input from a mouse or the
cursor control keys.

Refer to the Show Cursor function for a description of how
the number of Show Cursor calls affects the Hide Cursor
function.

Input

contrl{Q) Opcode = 123

contrl{1) Number of input vertices = O
contri(3) Length of intin array = O
contrl{6) Device handle

Qutput

contri{2) Number of output vertices = O
contri{4) Length of intout array = 0

- GSX 3.70/15

Sample Mouse Button State

This function returns the current state of the mouse buttons.
The leftmost mouse button is returned in the least significant
bit of the word. A bit value of 1 indicates the key is currently

depressed, a bit value of O indicates the key is up.

This function also returns the current x, y position of the
Cursor.

Input

contrl{0) Opcode = 124

contri{1} Number of input vertices = 0
contrl{(3) Length of intin array = O
contrl{6) Device handle

Output

contrl{2) Number of output vertices = 1
contrl{4} Length of intout array = 1

intout{0) Mouse button state

ptsout(0) X position of cursor in NDC/RC units
ptsout(1) Y position of cursor in NDC/RC units

Prestel Operations. (ACT specific routine}

An escape op is provided to allow the setting of attributes
for PRESTEL text. The only attribute initially available is
double height. Colour is handled using standard GSX text
functions.

Input

Contrl(1) Escape opcode = 5
Contrl{2)} Number of input vertices = O
Contrl(6) Op code = b5

intin({1} Set text single height = 0
Set text double height = 1

Output
Contrl(3} O

3.70/16 GSX

An escape operation is also provided to allow the writing of
PRESTEL text. This operation depends on the standard font
pointer refering to a double width font for 40 column mode
PRESTEL.

Input

contri(1) Escape opcode =5

contrl(2) Number of input vertices = 1
contrl{4) Number of characters in string
contrl{6) Opcode = 56

intin Word character string = O

ptsin{1) X-coordinate for start of string
ptsin{2} Y-coordinate for start of string

Output
contri{3) O

Notes:

This routine assumes that characters require no clipping.
The x,y position for the character is the bottom left corner of
the character cell NOT the character origin.

The writing mode is always transparent (mode 2) so that
PRESTEL can use bar for the background and then draw
‘OR’ the character onto this.

GSX 3.710/17

Systems interest

System Files

The GSX system comprises 2 fixed files

GRAPHICS.EXE
ASSIGN.SYS

together with a variable number of GIOS device driver files
which are defined in the ASSIGN.SYS file in a
pre-determined format as discussed in the GSX-86
Programming manual.

The contents of ASSIGN.SYS may be simply inspected by
invoking an MS-DOS command as follows:

A=>TYPE ASSIGN.SYS

06 F116 .SYS F1 16 colour 40 column
01 PC .SYS Apricot PC monochrome
02 F1 SYS F1 4 colour 80 column

03 PORTLCD .SYS Portable LCD
04 PORTCOL3 .SYS Portable 8 colour
05 PORTCOL4 .SYS Portable 16 colour

Az

In order to invoke a different default device edit the
ASSIGN.SYS file as described in the GSX-86 Programmer’s
manual. Remember that ASSIGN.SYS may contain any
number of GIOS Device drivers.

The first occurrence in the file is the Default GIOS driver and
it should always be the largest of all required device drivers.
it is loaded by GSX which only reserves sufficient memory
for the default driver.

Applications may invoke other GIOS device drivers by using
a standard GSX Call ‘Open workstation” which references
the file by the unique number which should be assigned to it
in ASSIGN.SYS. Only one GIOS may be resident at a time.

3.70/18 GSX

Appendices

i
rirt {

When the system is booted up a check is made to see
whether it is a cold or warm start. If it is a cold {power-up)
start the ROM resident diagnostic program is run to check
the integrity of the hardware.

If an error is found the diagnostic program is terminated and
the error number is shown on the start-up screen. See Table 1.

The ROM BIOS enters the boot procedure, displays the
start-up screen and eventally starts looking for a bootable
disk. Boot disk errors are listed in Table 2. Note that the
screen display of an error from the diagnostics is overwritten
by the boot procedure.

Both types of error are indicated by a large "X’ on the left of
the screen, and a one or two digit error code on the right.

Appendix A

Table 1. Boot ROM test error codes

Code Test Failed

20 ROM TEST: Calculates the checksum of the ROM
and compares it to that stored at the start of ROM.

22 SIO TEST: Register test of Z80 S10

25 SYSTEM RAM: Checks the system and any
extension RAM.

28 FDC TEST: Register test of the WD 2797 floppy
disk controller.

29 CTC TEST: Register test of the clock chip.

33 CLOCKINT: Checks whether a clock interrupt can
be generated -

35 DRIVE TEST: Checks whether drive O exists and can

be restored and stepped.

Table 2. Disk error codes

Code Reason
2 Drive not ready or disk removed during boot.
4 CRC error, corrupt sector format.
© Seekerror; unformatted or corrupt disk, or faulty
floppy drive.
7 Bad media, corrupt media block.
8 Sector not found; unformatted or corrupt disk, or
bad load address in label.
11" Bad read, corrupt data field on disk.
12 Disk failure, disk hardware or media fault.
98 Non-System disk (Not a valid boot disk, or disk

incompatible with drive, or invalid load address).
Note: if another loadable disk is found, this message
will only be displayed very briefly.

2 Appendix A

rault Kevhoard Table

The Keyboard Table and its function is described in detail in
the Keyboard Driver chapter. The purpose of this appendix is
to provide a quick reference guide to the format of the ROM
based keyboard table.

The default table is split into three sections each 104 words
long to accomodate NORMAL, SHIFTed and CONTROL modes.

Although these 3 sections respectively follow each other in
the ROM table, they are depicted below in “down-code”
sequence as returned by the Keyboard Driver showing each
of the three keyboard modes together.

Each entry in the table is 1 word in the following format:
(O} =— 15 bit STRING pointer —

FIe/DjC|B|A|2I8,76b/4[3/2]1]0

L |

ASCIl value or Special code

Prefix: 00 = no prefix

01 ="ESC’

10 ="ESC'+

11 = not used
Local Key (Data to Screen)
CAPS LOCK
SHIFT LOCK
AUTO REPEAT
Special Key inbitO-7
non-STRING

Attribute bits A - F are: ‘ON’ if set to 1
‘OFF if set to O.

The exception to this format is when the “Non-STRING”
attribute F is set ‘OFF" implying that the down-code is to be
translated into a string of data. in this case the format is:

bit O - bit E : String offset of 15 bits (i.e. 32K)
bit F :set O = STRING

Keyboard Table

7

o
=

The 1b bit address points to an entry which must be after the
end of the first 312 words of the table.

The actual entry is of a different format as it is of variable
length. The format is:

Byte ‘n": String byte count’'n’
Byte ‘n’: Attributes
‘m" Bytes : Data

Examples of String entries are to be found in the table in the
format of a pointer as follows:

<string name=
e.g. <80 Column Apricot>

Note: The 6 Membrane Keys MB 1 - MBG are not available on
the Portable or the F1.

Keyboard Table

Normal Shift Control
——— T i e ———
Legend Down Data Attribs, Data Attribs, Data Attribs.
code Normal Shift Control
F1/HELP o1 B1H 1000000C BZH 10000000 =80 col Apricot Comp.~
{see Note 1)
F2/UNDD Q2 B2H 1000000C B2H 10000000 80 col Colours
F3/REPEAT 03 B3H 10000000 LI 10000001 <40 col Colour=
{see Note 2)
F4/CALC 04 B4H 10000C0C CBH 11000000 <80 cal Apricot Comp. =
{see Note 3}
F&/PRINT 05 B5H 10000000 26H 10000101 O7H 11000000
F7/INTR 06 BBH 10000000 B6&H 10000000 BE6H 10000000
F8/MENU o7 B7H 10000000 B7H 10000000 B7H 10000000
FS/FINISH 08 B8H 10000000 B8H 1000Q000C BSH 10000000
MB1 (0]2] B9H 10100000 BSH 1010C00CC BSH 10100000
MB2 10 BAH 10100000 BAH 10100000 BAH 10100000
MB3 11 BBH 10700000 BEBH 10100000 BEH 10100000
nMB4 12 BCH 10100000 BCH 10100000 BCH 10100000
MBS 13 BPH 10100000 BDH 10100000 BDH 10100000
MB6 14 BEH 10100000 BEH 10100000 BEH 10100000
A 15 S 101100000 AT 10110000 10110000
11 18 ‘17 10110000 v 107110000 ACH 10000000
2e 17 27 10110000 ‘@' 10110000 ABH 10000Q00
3 18 ‘3 10110000 '# 10110000 OOH 1000G000
a3 19 ‘4 10710000 “# 10171000C 2DH 10000000
5% 20 ‘5 10110000 "% 10110000 F8H 10000000
5 21 ‘g 10110000 " 10110000 9BH 10000000
7& 22 010110000 & 10110000 7 10000000
g% 23 ‘8 10110000 % 10110000 F1H 10000000
9{ 24 ‘9" 107100C0 " 10110000 -t 10110000
0) 25 ‘o 10710000 Y 10110000 g 10110000
— 28 — 10110000 " 10110000 — 1011000C
=+ 27 = 10110000 '+ 10110600 =7 10110000
Backspace 28 08H 10100000 08H 10100000 08H 16100000
Percentage 2g ‘% 10100000 ‘% 10100000 9% 10100000
Muitiply 3¢ ‘¥ 10100000 ‘¥ 10700000 W 101000040
Divide 31 40 10100000 /1 10100000 /T 10100000
Subtract 32 —" 10100000 —" 10100000 ' 10100000
Addition 33 +° 10100000 '+ 10100000 '+ 10100000
TAB/BACK 34 G8H 10100000 O09H 10100000 09H 10100000
Notes:

1. This directs screen output to the default screen using
Apricot Compatible mode. The default screen is the
LCD on the Apricot Portable; the normal display
monitor on the Apricot F1.

2. 40 column mode is supplied on the F1 only.

3. 80 column Apricot Compatible mode in any two
colours. This is the same mode as defined by CTRL +
F1 onthe Apricot F1, but directs screen output to the
colour monitor on the Portable (instead of the LCD).

Kevboard Table

X

Normal Shift Control
o ————, e e B i
Legend Down Data Attribs. Data Attribs. Pata Attribs.
code Normal Shift Contral

Q 35 'q 10111000 Q¢ 10111000 11H 10111000
W 36 ' 10111000 ‘W 10111000 17H 10111000
E 37 ‘o 10111000 ‘E’ 10111000 0OBH 107111000
R 38 r’ 1011100C 'R’ 10111000 124 101 1100C
T 39 ‘t' 10111000 T 10111000 144 10111000
Y 40 v 10111000 e 10711000 18H 101110C0
U 41 o’ 1011100C ‘U’ 10111000 1B6H 10111000
| 42 i 10111000 g 10111000 C9H 10111000
0 43) 10111000 Q7 1IC11100C OFH 10111000
P 44) 10111000 ‘P 10111000 10H 101110CQ0
[< 45 T 1G11000C <7 10110000 T 1110000
]= 44 o 110000 s 10110000 T 10110000
HOME/ESCH 47 H’ 10C00001 ‘H 10000001 ‘H 10000101
CLEAR 43 £ 10000001 ‘B 10000001 'z’ 10000001
7 49 v 10111000 7 10111000 7 1010C000
8 50 ‘g 10111000 8’ 10111000 8’ 10100C00
e 51 g 10111000 o 13111000 o 10100000
CARS LOCK 52 O1H 11000000 O1H 11000000 C1H 11000000
A 53 ‘a 10111000 A 10111000 OfH 10111000
S 54 B’ 10111000 g 10111000 13H 10111000
C 55 o 1011100G ‘D 10111000 04H 10111000
F 58 ' 10111000 F 10111000 08H 10111000
G 57 g 10111000 ‘@ 10111000 O7H 10111000
H 58 ‘h’ 10111000 'H 10111000 G8H 10111000
J B9 3 10111000 J 10111000 0OAM 101110Q0
K 60 Kk’ 10111000 K 10171000 0OBH 10111000
L g1 4y 10111000 L 10111000 0QCH 10111000
o G2 e 10110000 o 10110000 t 10110000
e 63 rer 10110000 10110000 e 10110000
RETURN 64 onH 1C100000 ODH 10100000 CDH 10100000
Line Insrt Char 65 4C0H 10100001 40H 10100001 40M 101060017
Line Del Char 66 YFH 10100000 YFH 10100000 7FH 10100000
4 &7 ‘g 10111000 ‘4 10111000 £y 10111000
5 63 ‘B 10111050 5 10111000 ‘B 10111000
5] 58 ‘B G 10111000 B 10111000

1011100C

4 Kevboard Table

Normal Shift Control
e —— m——TT— T
Legend Down Data Attribs. ata Attribs. Bata Attribs
code Normal Shift Control
LH shift 70 0O3H 11000000 0O3H 11111000 O0O3H 11000000
z 71 4 10111000 2 10111000 1AH 10111000
X 72) 10111000 ‘X° 10111Q00 18H 10111000
C 73 ‘e’ 10111000 'C° 10111000 O3H 10111000
v 74 v’ 10111000 "V 1011100G 16H 10111000
B 75 ‘b 10111000 ‘B 10111000 Q2ZH 10111000
N 75 ‘o 1011100¢ ‘N 10111000 OEH 10111000
M 77 ‘m" 10111000 ‘M 10111000 QDH 101711000
.= 78 10110000 =" 10110000 10110000
= 79 10110000 = 10110000 10710000
/3 80 ‘f 1a11Q000 ¥ 10111006 7/ 10110000
RH shift 81 02H 11000000 O2H 11000000 O2H 11000000
Up arrow 82 A 10100001 «Fastscreen scroll= <=LCD contrast up=
Scroll 83 0AH 10100000 OCOH 10000000 OOH 10000000
1 e84 . 10111000 v 10111000 v 10111000
2 85 ‘2 10111000 2 10711000 2 10111000
3 26 '3 10111000 @ 10111000 % 10111000
ESC 87 1BH 10100000 1BH 10100000 1BH 10100000
CONTROL 88 04H 11000000 ©04H 171000000 0O4H 11111000
SPACE 89 . 10100000 o 10160000 o 10100000
STCOP 80 O0bH 11000000 O8H 11000000 O5H 11000000
Left arrow 91 o 10100001 °'D° 10100001 < Bell volume dn =
Down arrow 92 ‘g’ 10100001 <«Smooth scrolling= <LCD contrast down=%*
R arrow 93 'C 10100001 ‘C 10100001 <Bell volume up>
8] 94 o 10100000 O 10100000 'O 10100000
. 85 10100000 10100000 10100600
ENTER 96 0ODH 1010000C ODH 10100000 ODH 10100000
F5/VOICE 87 BSH 10000000 OBH 11000000 OQ8H 11600000
spare a8 11111000 11111000 11111000
spare Q9 71111000 11111000 17111000
spare 100 11111000 11111000 11111600
spare 101 11111000 11111000 11111000
spare 102 171111000 11111000 11111000
spare 103 11111000 11111000 11111000
spare 104 11111000 11111000 11111000

* Apricot Portable only

Keyhoard Table 5

String name String Attribs. STRING

Length
<|.CD contrast up=> 3 10100100 27 vy ‘E
<LCD contrast dn= 3 10100100 27 ‘X 'F’
<Fast screen scroll=> 3 10100100 27 v D
<Smooth scrolling> 3 10100100 27 ‘X 'D’
<Bell volume up= 3 10100100 27 v 'F
<Bell volume dn> 3 10100100 27 ‘x° 'F
=80 column Apricot> 3 10100100 27 77 U
<80 col Colour=> 3 10100100 27 7° T
<40 col Colour= 3 10100100 27 7 'F
<80 column Apricot= 3 10100100 27 7° 'B’

The remainder of the 1024 bytes of the default table are zero.

& Keyboard Table

The Apricot supports a default 128 character Ascii set in
ROM and optionally a full 258 character Ascii set in RAM.

The full character set is tabled below in Figure 1.

Following power up the pre-Boot software uses the 128
character Font in the ROM.

The Bootstrap procedure searches for the file FONT.SYS
which contains an 8 x 8 and an 8 x 10 Font to provide
support for 200 and 256 scan lines respectively. If found
then the file is ioaded into RAM at a fixed position (Refer to
Guide to the BIOS Memory Map).

A constant at offset OAOH in the Disk Label Sector (refer to
the chapter Guide to the BIOS) indicates the number of scan
lines and hence the Font to be used. The Bootstrap
procedure references this constant and then sets up pointers
to the Master and Active Font.

The pointer table in the ‘ROM specified RAM" (refer to
Mermory Map in chapter Guide to the BIOS) has two entries
which indicate where the Master and Active Fonts are
located. Each entry consists of the following:

Offset/Segment pointer to the character set
Length of the Font in bytes

The Master Font and Active Font pointers are set by the
Bootstrap routine.

The Master Font pointer peints to the base of the tabie in
RAM where FONT.SYS is loaded.

If FONT.SYS is not on the disk then the Master Font and
Active Font pointers both point to the ROM Font.

lf FONT.SYS is on the disk, it is loaded into RAM and the
Active Font pointer is set according to the parameter in the

configuration data of the Label Sector. It will point 1o either
the 8 x 8 or the 8 x 10 Font.

Normally Applications will not need to alter the pointers.
However, Applications may use alternative/multiple
character sets by loading them in free memory and
modifying the Active pointer and length.

Asecii codes

/

2 D P N I = T ST R __ 8 B
sl v.._.:/ a0 || © ﬁgaﬂ.\. ...Ju_n =]l < :
CEPE I I U - SN DS I - I N IO
] IR N N RN A A A T e
T g E 3 = E]| = b z G W S S = Z 5 ..m..m F]
Dﬂl’ H — 11 M — m — oy ¥ nﬂ Im 52 m
5] E = = ¥ g S 3 3 g 3 5
o R I D O el el i B N S W I N
T D I O T O D P D) . T - I
Mo+]| ||| =X F e~
= E E] [= a] d B 2 mlmL g rm m m ;ﬂlu.
<< | _é.*. —_ N =N E =4 . s
S G P P T U DR B DL P P A TS I P —
03] o |[=—> i~~~ |0) |+ VI.A_..I. o~ 0 L = —Il- 1 9] %
2P N, P v, RS UL UL B R B T ITIL o J.
Ol e~ 00 [|2 |8 X|@ [~ a <
= B W e 5 B o 8 .7 9§ § & _ 8§ _ & 5 & 5
D~ |0 ?wﬂ NS e 2 lemoo| gl e “ 2
B P v S D - R R - I N N RS - R @
0| @ Bio8 |0 = v ls g o o= 4] ol =
HTPUS PO [P P L I R - B - M T B MA <
5&.§%5EQUeua.u,N._.1+ b = o
= = = .
= z £ = 5 udu T s m._n._m m—1l—.-mz nll.m_ 5
< | P F Rt A o :0 - , o
S NG g 8w § & 8 8 _E o f. § % .
U.J' = |k [N} Cns L |miad | |-d —— |l | = = vi w
¥) F 5 G|] = ES Y 5] E3 g 3 E] e
N @ (Mmiwlo|so |Wloli FE-]| A j:
T T " __ 5 8 8 e d HeH ¢ %, 5 __ 8 % :
I\ BN N ER NN CAEKEREN & WITAE il -
e # vzl..._ 3 “Jm E ...m m ““.”...,...".“m m m m
o la oela alwulwm]el 204 18| 5
Ol Mg noiNo || m|u|[@ || e =

Ascii codes

2

i
o S

Uy
Griad
Lonten

Figure 1. Apricot F1 — CPU and Peripherals
Figure 2. Apricot F1 — Memory and Display
Figure 3. Apricot F1 — 128K RAM section
Figure 4. Apricot F1 — Expansion Port
Figure 5. IR Receiver Board

Figure 6. Keyboard

Circuit Diagrams 7

2 3 | 4 [5 [6 T 7 | 8 | 9 | 10 I i

3rd ANGLE PROJECTION - @—¢c}- (cni 3 23 Wiy Sie. CowniecTor)
A
pagl28 cni(22) Yo
pa 26 cNi (2D T
100K
e W1 Y paa (2l cni 20 vz N
RII
32.768KHL W, pa3|28 cnt (19) Y3
X1
x psol31 eN (1D Y4
3p B
psq |32 ent (16) Ys 96 KEY POSITIONS
xX12.
e o3 et (15) Yo
o ps3l2% ent (1P Y7 -
—&% vDD
proli CnNL(13) . Y8
prel15 cni(iz2) e
RES] c
pr2lte ent (i) Ya
st CNi(0) v
i
-1 vss L]
ci peo2T e (18) FEATURE KEYS ONLY
rj\'r:(;eoo: ON THIS ROW.
.V L PDTSOTC VoD
CELLS R7 []400K
IcC2 28 °
P61
'—’I SHIFT
1 &
I RB x4 - VoD N cnif3)]
R4 (1 100K
VDD
T2 pe2it2
O > oV o | conTROL RNI
THICK TRACK o (8 took) £
7 Smm IN ALL PLACES. ov
cNi(3)
poo |22 cni ()Xo
po 2% CcNi(2) xi -
POZLS CNIL(4) x2
po |28 cNi(5) x3
T
- o018 cni(e) x4 F
o1 1 et (7)) x5 cNos7| C_|2l.c84]
CcNoaz | B | 14-584
o1z I8 cNI(8) x6 eMoT | A 248t
N N (9) X7 ALT No|ISSUE[DATE
P13 4PPROVED .
. ;
N';lz CERTIFIED
ov FIRST JOB No
ACT (advanced technology) LTD
BIRMINGHAM,
@E} l:::-m\qudlhhuphcmulnmmmdAC'L::‘m

purpest without peior specific suihority i wnling of ACT.

IRKEYBOARD

SHT 1

sH1s 1

R1

+12V

! ! —1 I 3 FL1C4)
15@R
c7 ce |+ RS D1
4.7 8Ke BZY88 1@V
680p
at RE R3 R4
BC212 M s8R | akr ’ 2Y > FL1C2)
R2
R1@ RS
M 47K NICS é < 47K
_ + [”] C1 6 i 8
4,7, ——[”]—— RES VCC
¥ 680p ors | I
X 2 IRIE THRES — cs
680 p
SW1 ouT QUTPUT FL1C3)
R12 GND
™ PHOTODIODE Ril cig |+ ' !S
(TIL128) 47K c8 cs
D4 D3 De Tee 2.1
LENS @. 15/68p b
1, 16V
£ : I av = FL1C1)
M 137 /S 10 /-8
Z e DA oS 278 ACT (advancggwﬁihnology) LTD
S | CHavpE NoTE Ao, 065 -6
F | craniee Nore Ao, oS5/ 6 8¢) @G mmmwmuwmmmh-mum:hﬂ The hawing
3 | coavss AMoTeE Ao, I3 2. By Ting|PUpose withour e spacit sutharie 1 witng o ACT
2 | cHanes Aore Ao, 035 -4 B
7 7.4 83 INFRA RED DETECTOR
CESCRIPTION CHx D] APPD] DATE
RS

[sur 7

4TS 1

T TR 2 oyg
ZERART /5 = i
T YV 4 ZmE
TREAF e
Lo Las
X ~~ 5 verr|
asd .L —(5 5l
28 P = Tp3)
282 - 2 WOMI‘:‘;EV #03;
285 -
DBd
LE5 SELson
LB
267 o / [sme]
£ (@ 1 /
N 3
288 2
g - :
2s10 r5e 7|8
"3 FHSTA
o - . o
23 et sor rom
o] — —e 2oz |— Pgesied
i foid J— Dean7 — —ees DRLY - ses i —
s Y e Feom) bod | DN SR OFE) pod
RE4p, — T 2504 —dsis 205 |—— —] s 7 o5 f—
e PELS257A e pre, SEEPR6Ae £085 Lo gy, SEE Mo 28 L
i Aed 2 —5 serl . s Doz —
N s
1PN
As2 Al)2 Face g Y] S poal Ll
el 2l |z JE e 23— s ey
Aok e N4 — o0 doro—— _Jonie ool — | e o 07
85 Lo ol Aesed . st oz s
A5 -] D e D271 POzt —ors 2ol
vt 1P — oz 208 e s Bors|—
e 2 _ PR — s Dostt—— — e Do f—— .
£ _OE — s P —2res 2075 |—
T ki ! z
. — 5
L J— ron———
i cru P R RN 123
N T LM R Y =
EREBRE m‘ d[=
AEY e
A8 \—rﬁ_/ FLE2 574
ABis a7
A8z Y
AB3 Zn
A& o
485 203, Hl2
AL a2 7/z~
ABIF EZES HL5373
4818 Blig arfL
Blog R . R N RN K] LR ESLT|
3 2 = 248 R
o = ‘ § 2143 8309 PS5 vraE0)
o on A rsod o N %
7 g s oz | zarses —
£ JL Lo e TS 7 _5‘—-—’ s 9348
Aeser p[TF e 2
7 = ¢ QR
_L] PR v 24 ”CS &) FRLSZ7F
z= 5o s
2 =)8 7 =TT
zboe
2 = {>o’“ v
7v <
Elp e A 5 B - ams ¢ o bo e
7 Ls - 2 = O e = ik e
50634 s ‘ * sl 2 eas 7:5255 , 4
JLA— el &3
#e5 REFE o, < cas £l
w5y B P
Tle av 5
277 e o ol 3 a 5 s =l
g Ha 3 L5 2 Hess630 Z k3 FEETEA |10 3
P wf sy 12 e rox o
ey o <38 wa 2 5y ” za 2.1z ElE
B] & i 1z e i 215 2
o e nls Llrg el ccr 7 7 2y, 3K | o
Ueor 23 2w ol 12 72
47 s or , - 2o 24 2aL_ 243244
2o e 4 o s BE | Aes25TA Fi P 2B TS0 pezre E s |7
sr i 5 I s B : &k i v
e B -
srarese L5 /34 Py 3 2w ||« BRED: e FEERT b ABe AB3 ABE
h) FHLE 1634 = Ed — [BEWEE TmE | cor e== |#v]ov | Bivis ryre | cir mer i ov
CE b -———j > | I« = s s (55 51 i v | 8 | Sl sodnd | 2 Fe | 7
1 5 . 13 15 20,27 347 SwLSoN || ET |71 F
s] 6K REST T pides sz i e on e | 20| 10 | SRS Dan |G e dx Bl | sa | P T
il -
il SNALLSFRAN I5E, I | 7 |swgesaen |27 | 7
[J = T Syrazssan |47, 5K 7 | 7 | Swisoon | 2 3o i
42500 =
SNFFSIEIN SEE o | 8 |TBFI85030 | SA7 S| 8
=1 G &S B | e | B | Swdes 2558 | sak JE |7 e oo
; x SNRLBESTAN | &1 &5 7H 8 | S K 52958~ - 3F |
- 2fPe ek s | e FHE - Fxror i i 4 . R |o | cuanse vore w2 | 22/1/85
i ar— 297 GHES GK MEHGRY 2] & 2Aazo S, 124 SHAESO0 Frexen |4 8 | cHavoe wore 129 | 11/i2/3
FHLEE = RIS GIVES 256K MEMARY 74Lsaz/ Z SNALS2A4N | i5A SO N SNIEESTL 27 = A Cranee worE ize | 2ol
cx SWAASI RN | GM AA fo | 8 |supLsisy |9y Ko | & RV EIONS
AL574A
THLsoo f
2r
VELANK
4;/50 APRICOTF1
DISPLAY AND MEMORY
Aoy,
—_— Pozas| fone 4
[— -
PR ———

hdie (LR.)

e

TEEAT
Fer=v]

=

A5V
4 wsv
Zearor [{ [] 3 [FHiszas
) P o o8
2 e
oy
] fAL
~
/£
=

ATowA

AR
FowR
e
AosbA

ampy

P
ey

romny

LS232. 25 WAY D TYPE
ADL
A

kS
S
8

< =

N
Zaineleags

Iy
4

& AL

reo
A8 DB A2 43 25 e

7] 3T

£ Pq‘ }35

FIPTFTre

P2

&k

AgAny

I

13,7517
182423,

T

Rny @2aarA
26 2 720013
N 1811197 21,23,28
#5¢ HO It
lers| [e FLOFPY DISC
/5K 1K) oy (26 WAYIDE)

.

FZX3
sy '
E=3

IR

o R (e EX
Serzac2, 23] 2 €25 €33 C2
t 7% S
£nie
/s |23 |8 2 |20 | 24
5 [TLK Cono For CinE Cins Ciks [f/ap ey 2 % ComtoNBs NOT NoRmALLY
o R [e FETET 2 yer SF 2 5 e
/3D N P woz7I7 .
zlmy 28o-cre e
0
TERE (e THE T 2| T A
é EEES /3,
sl rer R (Fte ZETED 8| oee H5) .
CE <5/ C5f DU 2y p1 23 MR Ko 27 ! ME RE CE Al g 2E_ Vea Cek DE O K B3 25 D6 ST o
/5;5{2;';41;7'2,’/’%3]‘ H E 6 15 37 < ZI AT R YR AT Y
4 . ves
738 M2 AE Yo 50
o ov
Aok TG (e A2 A/ 2z
08 #-7 rar Arow. JEEED E #
— oy
]
¥ —28
— —— &3
> 5v L #5v p5v —r
alsislelrlels T calslslelluls T —a
P8 212 25 24 25 2] Vo B 08 2 g2 8 D25 2 37 Yor 27 — a7
A4 A "~
22 5E - 2oz SO o’ — 285
2ol 27:28 jrow) 20| 27128 (fer) ABIS :ﬁ,’;
Brdeled LReRIRE TreY Ry 233zl —
rsr7rrr Ex r;szﬁlb m;}a7e|s]4 zaslz/mzlu — 2803
— Do
-~ Y . N . =2
i l Az¢ AZg
Py —AAs
— Az
— A83
| — Az
. — ass
— Ase
Axg m 3 » @) 288 ASIARAE g, — 48y
3
r £. Ta L L L P lz |+ |7 2 Iu 1/¢ I/; e {— 438
/—% Jod Y [F 2w S0 65 ,,5,5 R me | I —
FHALELEY: yZy-1 =L 30
zz’ T I3 % f ¥ Lo 2 f2 50 607 42
'4-557,«’ % 22 BEARaE

.

THLS/3D
£
5V 3 s W
<% WEEAD 4 58
' l 2 I
Fex i 8 13
s £l -
iz 3 BB . “ore .
773) 8A A7
74 TA
k]
Y
| 85 X7 % %
§5d
MAn ~ E g8
= 73, fxw
5] 94] 84 8 g §
& Lo Y= S L a5
t—tt = =4 B2 P
P=r24 X

/IA
LS5

250" 2/

7o HD/0 4
2z
223
[=sy
234567839 4 ST AniS<Fo mE & 35 st
Hper 4 S %ot
/. - P pﬂmaz))%jkéﬁf
= oV HD1
ad T way cevrrRoNCS
pevicE TvRE | con mes [wv]ov] Devics TvpE | dor REF [asv|ov | serice rymE | cor mer lpee] on
S08¢ Jon do|20 | Z80 - cre #3D 24 | 5 | swvtesedy | e AT
SNZRLS (3AN | /A, 12C e | 8 |27zs 8F, 105 28 | rt | SNHLS ZHAN | (34, /SC A
SNZHLSI7IN | Bc.ansEac)20 (o (wd2r978-02 |50 2/ 20| SNAFLSZ A | T 4|7
SNPHLS/3N | BE,58 fo | B (S Zdes00M |88 4| 7| SNALLS25IN e B a8
SNPHSZAEN | 1D, HE 20 | /O |SNFHLSOSN | 8A, /3. sg | T NSNS 2N /¢ K
SNLLS2G4GN (LD 20 | 10 | SWALSOGN |25 104, 108 [/t | 7 | orzas ZA, 34 7 ¢ | cranee more 42 | 227751
S
SNALS I75N | 45 e | 8 |SNARLSTZN | 5C, 50, /6A | /4] 7 | e r2as)z B2 B | crme wore 129 | jra)]
Z80 ~5r0/@ |/Fn 3 |3/ [swrtosn [4H sec s 7 |SwrdSsen | /2A M7 A [cramee wore o 25 |monfen
v,
5w REVISTONS
@p AT tadvenced techrotogy) LTC
ce» & st
(Cored
T
| £w2.
/804 ,AL:'
ov o

‘o205

Dog

Do/
Doz
do3
2o¢
Dos
Do
20 207
Bi7
/2
o
2/,
:747%) — #5y
217 7
8 T@]8]a Is Ia Ta &
2 pin Veepyri| |2 4 L2 2 | L] e |2 1 [2] Il 2] _"iJ L 2] ﬁl
4] ’ ‘ . -] fa 4 A
A5 =\ z33 < 4 P P z <
CAS . CAS /5] /5] /5 V3 /5] /5 /5
WEZ Elp>-a 3 E] 3 3 3 3
A\ P 5] ap 5 5 5 £ 5 5 E
ac Z} a0 8rr7 7 Brré 7| Br7r s 7| Brr 7| Brr3 7| Brrz Zl Brrvs 7l srrg
- ’3 & 3 & = &
2 —E4 sns & zios e /et £ Lt 4 sies £ e | Fres iz Ared
AL HiAg 2t 7 17 i £ .
5 /0l A5 o Lo 1o fe 10 1) 7o
- - M- 3| 46 /3 /3 /3 /3 /73 /3 73
Az — 9lay 2 £l 9 9 3 K] E]
Vss =
‘e 2 1/6 J/g, I/a I/o l/c. |/¢=
1
—— £S5V
e le ls le le la la s
Vee ,
—— Z pd il 4 / / / /
RAs ' 4; s pr3 7 & =] <] 4 I
/5l EaZ b /5] 75 /5] i /5| /3 /5
HWEH Er 3 3 3 3 3 3 3
P S| ag 5 5 e 5 E3 K 5
7l 4 B778 7| Bzr3 Z R77/0 7| Br7 /s 7| Br7r/2 7] Br7/3 7l B # 7 Brrss
Ar & & % 3 é
7l o et = Fod o Fred | FlodF L Hrod | Fred = et | Fe#
73 Pva /7 ” " 7 /7 7 7
‘o] A5 /o /0 /e /0 /o /o /0
/3 a6 /3 73 /3 /3 /3] 73 3
2laz 3 9 3 2 E) 3 2
2 M p our|® 2| | /2 2 14 2 ¢ 2 | -2 I z |72 2] £
£33
— e l/e l/e l/e l/b 1/4; J/c, 7
Do g
209
ov Doro
ped- 284
Q072
PL-YE]
Dorg
2045
218
212
20 [T
DI ACT Cadvanced technology) L7D
DI/ 27, HIGHFIELD ROAD, EDGBASTON, BIRMINGHAM
2773 Ts dravin ~ Tereon are the exclusive
py) @3 [L e T
25E Ry | onnenke rnmeted o Tepresieee in oy Fort and o <y
5 "™ APRICOTF1
T 128K RAM SECTION
NOTE - 2 RBAVKS OF /28K RAN SkownN FaER SBoAR), APPROVED |ORG. 40,7 T 3
o=

DATE

i
0285 .

siTS 4

Kow B oA

A B2 32 #2V
#EV 37 F #5v
280 30 Jo DA/
DEZ. 29 P 2B83
DEL 23 28 255
DES 27 27 DB7
AL 26 26 AB9
A&y 25 25 As/2
AR 24 2 2 READ
Mo Z3 23 DI,
AOLd 22 <2 ZORELD
AR iz 2/ RESET
OIR Zo 2 AToWR
VD /9 el &
T S &] DEN
TORDY” 14 74 MDY
HOCDA /e A READY
NTZF <2 7% A
ABC e s N7 2.
ALE /3 /3 AL
DB ’2 /2 288
28 // 7 172 2B/O
PLi3 o so . D&r2
DEIS 2 9 284
ALz 38 8 AB/
AL 7 Vd A8,
ABo. .. & & AB5
ABs<F 5 5 AEAT
Ag s 4 4 Al
ABr7 3 3 As/8
AB/T 2 z B
N T CoVVECTED / 7 S AGHZ oK,

2 x EF mAy ComECTORS

(HDT7 ¢ /9)

DEC ’
D82, 3
DL s
D8& i
AsB8s0 2
A8 /4
AT /32
r/ TS 5
Hord 7
AR /9
TEniR EY
SNB Z3
e 5 25
ZoRD), 27
Aol DA 29
AT 2
AL& 33
ABS 35
DE3 37
287 39
2803 L2
2875 42
A8 2 *5"
ABE g7
ABo 2
ARG <7
A& £=
AB/ 55
AZ/3 57
-2V 9

SO WAY ConnESToR

///@ 8)

C O NoTE No O9 7 3/7/34
& | Chinideg A1o7E N, OSSO D 116 foy]
No. DESCRIFTION CHK'D| APP'D | DATE
REVISIONS

27, HIGHFIELD ROAD,

EOGBASTON,

ACT Cadvanced technology> LTD

BIRMINGHAN

This drawing and the design hereon are the exclusive

@—E property of A.C.T. The drawing shall nat be copied nor its
contents communicated or reproduced in uny Form and For any

THIRD |Purpose withoul prior speciFic authority n vriling of A.C.T.

SCALE TITLE:

141
DRAWN

APRICOT F1
EXPANSION PORT

APFROVED |ORG. NO.:
DATE
-02-85

[sHT 4
oF
TS &

APRODUCT OF THE UNO RANGE- ENGINEERS CAT. No. 7302

594+ 420mn A2

colape sequence
reference tanl

The ESCape sequence Table in the Screen Driver chapter
lists the sequences in Ascii ascending order.

This appendix lists them by the following activities for quick
reference:

1. Specials

. Character attributes
. Screen attributes

. Colour

. Cursor positioning

. WP primitives

. Driver environment
. Keyboard

O 0 ~N O 0O = WM

. Generic obsoletes

ESCape sequences 1

Specials

CHR HEX M/C

ACTION

& 26 PFA

27 PFA
* 2A A
8 38 PFA
? 3F A
[5B PFA
; 7D PF

Print Page

QOutputs the contents of the Screen
to the line printer. A form-feed is
executed first.

Print line

Outputs the entire line that the
cursor is at to a connected line
printer. No form feed is executed.

Change to second character font.
Set literal/Test mode ON

The escape sequence tells the
screen driver to perform the
following action on receiving the
next character:

fgnore the fact that it is a control
code (<20H) and print the
character associated with it.

This means that the font cell
characters under (20H} are
printed, rather than obeyed.

The ESCape must be sent for each
character.

Enter CALC mode

This escape sequence switches on
the internal BiOS calculator. [t is
the same as pressing the “calc”
key.

ANSI lead-in character.

Refer to section ANS| ESCape

sequences of the Screen driver
chapter for details of the ANSI

codes supported.

GSX private - this call is
documented for completeness
onty. It is not supported.

2 ESCape sequences

Character attributes

CHR HEX

M/C

ACTION

0

30

31

39

3A

70

71

PFA

PFA

PFA

PFA

PFA

PFA

Sets underline mode.

All characters printed have a single
line of pixels placed under them to
simulate underline.

Reset underline mode.

Cancels the mode set above.
Set strikeout mode ON.

All following characters are
displayed with a horizontal line
through them at the centre. This is
widely used for deleting data
within legal documents.

Set strikeout mode OFF
The code reverts the action of “9”

(39H).

Enter reverse video mode.

Al characters printed after this
sequence are displayed in inverse

video.

Cancel reverse video mode.

Restores the writing mode to the
state it was in before ESC 'p" was

executed.

ESCape sequences 3

Screen attributes

CHR HEX M/C ACTION

{ 28 PFA Set High intensity Mode

Shadow-prints all characters to
give the effect of high intensity
characters.

) 29 PFA Set Low intensity Mode
Clears the mode set above.
+ 2B A Clear all high intensity characters.
2C PFA Set Window size.

Takes four parameters in Ascii:
< 1= Top line + 31

<2> Bottom line + 31

«3> Left-hand column + 31
<4= Right-hand column + 31

- 2D A Clear all low-intensity characters.
2E PFA Reset Window Size.

Resets the Window size set by
code 2C

4 ESCape sequences

Colour

CHR HEX M/C ACTION

b 35 PF Set foreground colour.

This escape sequence takes one
parameter which is from “0” (30H} -
to “?" (3FH). This gives 16 possible
indexes. For a list of indexes and
colours represented by them see
escape sequence “]” (bDH). See

also the diagram for ESC “6”

{36H) below.

6 36 PF Set block or background colour.

This escape sequence sets the
colour of all pixels in the character
cell that do not make the actual
character shape.

As above, it takes one parameter.
Diagram of a character cell:

Background. (all Q's)

|

00000000

00111100

00100100

001001 Foreground or text
00111100 colour. {all 1's)
00100100

00100100

00000000

] 5D PF Set palette code.

This escape sequence takes two
arguments. The first is the index
which needs fo be changed, and
the second is the colour.

e.g. PRINT CHR$({27) “JO5”

Sets index O (in this case the
background} to colour 5.

Refer to the Colour section of the
Screen Driver chapter for full
details of index, colour and default
Palette settings.

£S5Cape sequences &

Cursor positioning

CHR HEX M/C ACTION

3B PFA Position cursor to start of status line.

Paosition the cursor to the start of
the statusline, i.e. the 25th line of
the Screen. The cursor remains on
this line until a position cursor
command is given.

41 PFA Cursor UP

42 PFA Cursor DOWN.
43 PFA Cursor RIGHT.
44 PFA Cursor LEFT.
45 PFA Clear screen.

The current window is cieared, and
the cursor is homed.

H 48 PFA Home Cursor.

The cursor is placed at the top left
hand corner of the current text
window.

Y h9 PFA Position Cursor.

This sequence takes two parameters.
They are the line number and
column number in normalised Ascii.

e.g. PRINT CHR$(27) “Y”
CHR$(10+31) CHRS$(15+31)

will position the cursor at line 10,
column 15.

m o O W >

j BA PFA Save cursor position

The current cursor position is
noted within the BIOS.

k 6B PFA Restore cursor

The cursor is restored to the
position it was in before ESC ‘} was
executed.

6 ESCape sequences

WP Primitives

CHR HEX M/C ACTION

@ 40 PFA Enter insert mode.

After this escape sequence is
issued, whenever a character is
printed, all the characters to the
right of it will be shifted right one
place and the character wili be
inserted in the space created.

! 49 PFA Reverse-index and line-feed.

This sequence moves the cursor up
one line, however if the cursor is at
the top of a window then a scroll
DOWN of the whole window is
performed.

J 4A PFA Erase to end of Page.

The sequence first of all erases all
characters from the cursor
position to the end of the current
line, and then all subsequent lines
below the cursor till the end of the
current window or page.

K 48 PFA Erase to end of line.

This escape sequence erases all -
characters from the cursor ’
position to the end of the defined
right-hand side margin.

L 4aC PFA Insert line.

This sequence places the cursor to
the beginning of the current line,
and then inserts one line below the
current cursor position by scrolling
all subsequent lines down by one
place.

ESCape sequences 7

WP Primitives (Continved)

CHR HEX M/C ACTION

M 4D PFA Delete line.
This sequence places the cursor o
the beginning of the current line
and scrolls all lines under it up by
one place.

N 4E PFA Delete character.
The character under the cursor is
cleared, and all characters to the
right are scrolled left by one
position. This is active in the
defined right-hand margin space.

O 4F PFA Exit Insert Mode.
This sequence reverses the effect
of ESC“@" (40H)

P 50 PFA Insertsingle character.
This sequence scrolls all characters
from the current cursor position to
the defined right-hand margin right
by one place.

Q 51 PFA Scroll left.
Takes one parameter which is the
number of columns plus 31 that
the screen is to be scrolled. This is
only active in the current window.

R b2 PFA Scroll right.
As above, except scrolling is right
rather than left.

S 53 PFA Scroll up.
As above, but scrolling is UP.

T 54 PFA Scroll down.

As above, but scrolling is down.

8 ESCape sequences

WP Primitives (Continued)

CHR HEX M/C ACTION

b 62 PFA Erase from start of page

All characters from the top
left-hand corner of the current
defined display page size to the
current cursor position are cleared.

h 68 PFA Reverse tab

This sequence has the opposite
effect of control code OSH. It
performs a tabulation operation o
the left rather than the right.

| 6C PFA Eraseline

The line which the cursoris onis
cleared. Note that no scrolling
takes place

0 6F PFA Erase to start of current line.

All characters from the start of the
current line up to and including the
character under the cursor are
cleared.

v 76 PFA Wrap at end of line.

This escape sequence indicates
that the normal screen driver
action when the cursor reaches the
end of a line should be employed.
The action is to return the cursor
to the beginning of the next line on
the screen.

W 77 PFA Discard at end of line.

When the cursor reaches the end
of the current ling, it will remain
there.

£SCape seguences 5

Driver environment

CHR HEX M/C

ACTION

7 37
F 46
G 47
Z 5A

PF

PFA

PFA

PFA

Set screen environment.

This sequence is followed by one of
the following mode parameters:

“0" - Apricot PC & Xi monochrome
compatibility

“1" - 80 column full colour display
“2" - 40 column mode

“3"- Apricot PC & Xi monochrome
compatibility

Refer to section Screen
environment in the Screen driver
chapter for operational details.

Enter VT52 Graphics mode.

VT52 mode displays the VT52
graphics character represented by
the Ascii value of the Apricot lower
case letters. Other characters are
not supported.

Exit VTH2 Graphics mode.

nvoke this mode to exit VTH2.
Failure to do this results in
non-lower case letters being
incorrectly displayed.

Identify as VTb2.

This escape sequence is included
as most of the screen driver is DEC
VT52 compatible. After issuing this
sequence the keyboard buffer is
filled with three characters which
can be read by an application to
determine the device type.

10 ESCape sequences

Driver environment (Continued)

CHR HEX M/C

ACTION

i

60

61

78

PFA

PFA

PFA

PF
PF

Save environment

The first three environment flags
are saved. They can then be
temporarily changed and restored
by another sequence.

Restore environment

Returns the first three environment
flags to their state just after
code 60,

Set environment flags.
Takes one parameter:

G - reset screen palette

S - set to apricot comp mode on
default screen

1 - enabile line 25

2 - nothing

3 - nothing

4 - nothing

5 - cursor off

6 - nothing

7 - nothing

8 -set auto LF on receipt of CR

9 - set auto CR on receipt of LF

A - nothing

B - nothing

C - nothing

D - smooth screen scrolling

E - LCD contrast up

F - bell volume up

ESCape sequences

7

Driver environment {Continued)

CHR HEX M/C ACTION

¥ 79 PFA Reset environment flags.
Takes one parameter:

1 - disable line 25

2 - nothing

3 - nothing

4 - nothing

b - cursoron

6 - nothing

7 - nothing

8 - no auto LF on receipt of CR
9 - no auto CR on receipt of LF

A - nothing
B - nothing
C - nothing
PF D - fast screen scrolling
P E - LCD contrast down
PF F - bell volume down
z 7A PFA Reset all screen drivers.

Sets all screen drivers to power-on
status.

12 ESCape sequences

Keyhoard interaction

CHR HEX M/C ACTION

$

24

34

PFA

PFA

Transmit Character

Sends the character under the
cursor into the keyboard buffer.

Change the representation of a key

This escape sequence takes 3
paramaters. They are:

< 1= - Key mode (ascii)

1 = normal
2 = shift
3 = control

<2> -Key number — 1
0 = help... etc.(refer to
Appendix B}
<3> - New key character :
Ascii char. or hex equivalent.

10 PRINT CHRS${27)+"4"+"3"
+CHR$(72)+"C"

This example changes the key with
the legend “C” {(downcode number
72}, in control mode, to generate
an ascii “C"” (43H) as opposed to a
binary Q3H.

The key has the default attribute of
AUTO-REPEAT. Refer to Appendix
B for alist of keys, their
corresponding character value,
down code and attributes.

Note: The Screen Driver does not
accept non-printable
characters (range 0 to 31) in
ESCape sequences therefore
no Key or Key character can
be programmed with a value
below 32. See <2= and
<3> above.

ESCape sequences 13

Keyboard interaction (Continued)

CHR HEX M/C ACTION

/ 5C

PFA

PFA

Place key in keyboard buffer.

This sequence takes one parameter
which is placed in the keyboard
buffer. If the buffer is full the bell
will sound and the character will be
ignored. eg:

PRINT CHR${27) “/R”

will place an “R” into the keyboard
buffer.

Return Cursor position.

This sequence places a valid ESC
“Y" sequence representing the
position of the cursor at the
current position in the keyboard
buffer. i.e 4 bytes of data:

27+"Y"+(31+column)+
(31-+row)

where column and row have a base
of 1.

14 ESCape seguences

Generic ohsoletes

CHR HEX M/C ACTION

/ 2F A Set membrane key LED's.

< 3C A Display time on MSCREEN.

U 55 A Enable dual-output to MSCREEN

\Y 56 A Disable dual output.

wW 57 A Output text to MSCREEN only.

C 63 A Disable MSCREEN scrolling.

d 64 A Enable MSCREEN scrolling.

e 65 A Switch MSCREEN cursor ON,

f 66 A Switch MSCREEN cursor OFF.

g 67 A Disable Time and Data display on
MSCREEN.

r 72 A MSCREEN echo enable.

5 73 A MSCREEN echo disable.

ESCape sequences

5

Overview

Interpretive Basic
The Data Segment Register
Non-BIOS routine calls

Compiled Basic
The Data Segment Register
Non-BIOS routine calls

‘C’' Programming Language
The Data Segment Register
Non-BIQOS routine calls

Language interfaces 1

Overview

The programming examples in this manual are provided in
Interpretive Basic.

While it is recognised that the majority of Software products
are written in either assembler or compiled High level
languages it does not necessarily imply that these tools are
universally available.

For this reason, together with the overriding consideration
that all examples should be in a common language,
Interpretive Basic was chosen.

This appendix is provided to support the programming
examples given throughout the manual and as an
introduction to interfacing in Microsoft Compiled Basic

and ‘'C’.

Interpretive Basic and the compiled languages mentioned do

not provide a compatible means of interfacing to
machine code.

The most common problem being that pointers to parameter
blocks are either in the incorrect format or on the stack
instead of in a register.

Another problem is that, in the case of BIOS, GSX and other
installed Device driver calls, pointers need to be set up
containing the Applications Data Segment. The address of
the Data Segment is not however accessible by many languages.

Apart from these points, languages such as Interpretive
Basic have idiosyncrasies which are not at first apparent to
the Application programmer with little experience in

this field.

Therefore the requirement for interfaces of all kinds and care
in using them is needed. This appendix does not attempt to
cover all possibilities but merely to support the programming
examples given and o act as an introduction to the subject.

The Control device chapter provides details of how o
interface to the BIOS in assembler and BASIC. For other
external software such as GSX reference to the appropriate
manual will provide full programming details.

2 Language interfaces

This is one of the most easily used High Level languages
because of it's interactive nature but it has not been
developed with a view to interfacing to machine code within
the Application bounds.

All of the reasons for this fall outside the scope of this
manual however the relevant points are as follows:

1. The use of the Call statement with a string parameter
results in the interpreter putting a string descriptor
pointer on the stack - not the address of the string. The
descriptor is a 3 byte packet containing the string
length and the address of the data itself.

2. No functions are available to obtain the value of the
Data Segment register.

3. The location of string variables can change during
execution of the Application.

As mentioned in the overview many calls to systems
software require pointers to parameter blocks.

In addition, the machine code interface must be located
within a reserved data area, and this can be achieved by
creating it in either a string variable or an integer array.
Both may cause problems without due care.

The Data segment is not available because of historical
reasons. The only solution is to use an interface or
subroutine in machine code to obtain it. The implementation
of such an interface is given below.

The location of a string however poses several problems.
Strings are by far the most convenient way to store a
machine code routine and they are also widely used as
parameter blocks.

interpretive Basic moves strings in memory as it creates
them especially when using concatenation.

Language interfaces 3

The following precautions should therefore be taken:

1. Always ensure that the address of a string is correct
just prior to calling the machine code routine,

2. Ensure that the string area is not unneccesarily
ciuttered with work data by executing a FRE{" “}
function whenever convenient.

Microsoft Basic does this from time to time
automatically but where concatenations are frequent it
is possible that a potential string field overlaps other
reserved areas. The machine code routine has no
knowledge of the interpreter and may alter the string
and corrupt other data.

In either case caution should be taken to ensure that a
string pointer and the contents of the string are
unchanged.

4 language interfaces

The Data Segment register

The routine below creates a machine code interface which
when executed returns the value of the Data Segment
register in an integer variable. On entry the stack has the
following entries:

SP + 4 Address of integer variable
SP + 2 Segment of Return address
SP + O Offset of Return address

9000 REM routine at GETSEG

8010 DATA &H55,&H56 :REM push bp:push si
9020 DATA &H89,&HED :REM mov bp,sp
9030 DATA &HBB,&H76,&H08 :REM mov si,[bp+8]
9040 DATA &H8C,&H1C :REM mov [si],DS
9050 DATA &H5E,&H5D :REM pop si:pop bp
9060 DATA &HCA,&H02,&HOO ‘REM ret 2
9100 REM set up routine
9110FORI=1T0 14
9120 READCODE% ‘REM get machine code
9130 GETSEGS==GETSEGS+CHRS(CODE%) :REM store it
9140 NEXTI
9150 GETSEG=PEEK(VARPTR(GETSEGS}+1)+{256+PEEK
(VARPTR(GETSEGS)+2)

9160 RETURN

Notes:

1. To use the above routine do a GOSUB 9100 at the
beginning of the program and then cali it, for example

10 GOSUB 8100
20 CALL GETSEG{SEG%} ' returns Data Segment in SEG%

2. Statement 9150 assigns the address of the string
GETSEGS in the variable GETSEG. Strings are usually
to be found at the end of the data segments and have
offsets greater than 32767. Therefore an integer
variable e.qg. GETSEG% cannot be used to obtain the '
address easily.

3. The function VARPTR returns the address of a 3 byte
string descriptor of the following format:

BYTE string length in bytes
WORD offset to string data {Intel format)

Statement 2150 picks up the contents of the WORD
from the string pointer packet.

Language interfaces &

Non-BIOS routine calls

Certain calls to installed Device drivers require a
Segment.: Offset pointer to a parameter block in a register pair.

The routine given below is used to call an external Device
driver with a Parameter blockin astring variable. Theinterface
extracts the pointer to the parameter block from the string
descriptor and places it in the Sl register before calling the driver.

On entry the stack pointer is the same as for the example
given above.

SP + 4 Address of string descriptor
SP + 2 Segment of Return address
SP + O Offset of Return address

Note that the first two Push statements require the offset in
the routine to be modified by 4.

9200 DATA &H55 : REM push bp
9201 DATA &H56 - REM push si
9202 DATA &H8B,&HEC - REM mov bp,sp

9203 DATA &HBB,&H6E,&H08 : REM mov bp, [bp+8]
9205 DATA &H8B,&H78,&H01 : REM mov si,1[hp]

8206 DATA &HCD, &Hxx :REM int xxH

:where xx is a valid interrupt address
9206 DATA &H5E :REM pop si
9207 DATA &H5D : REM pop bp

9208 DATA &HCA,&H02,&H00 : REM ret 2

9910 CODES=SPACES(255)

9920 COBE=PEEK(VARPTR(CODES)+1}+{256%PEEK
{VARPTR{CODES)+2}}

3950 FOR I=0 TO 16:READ J%: POKE Vi+1,J%: NEXT I: RESTORE

9990 RETURN

Notes:
1. The routine is generated and executed by including the
following statements in an Application:

10 GOSUB 9910 'set up routine
20 CALL CODE{PARAMETERS) ‘calls the routine

2. The routine at 9910 should be executed as soon as
possible in the Application to ensure that CODES is not
moved around by the interpreter. If there is doubt then,
whilst the Application may be slowed down, recreate
the CODES each time before using it. As will be seen
these problems do not occur in compiled languages.

3. Calls from Interpretive Basic are “Far Calls”.

o

& Language inlerfaces

Microsoft Compiled Basi

Microsoft Compiled Basic has the same idiosyncrasies as the
interpreted version with the exception that string data is not
moved around in the same way.

Therefore the main problems to solve are those of obtaining
the Data Segment, String pointers and setting up registers
correctly.

The two examples given below are equivalent to those given
in the interpretive section.

The Data Segment Register

PAGE 60,132
TITLE Getthe Data Segment register

code segment byte public ‘code’
assume cs:code
public getseg ;make this routine available to

basic
getseqg proc far ;must be a “Far” routine
push bp ;save current base page register
push si ;save Slregister
mov bp.sp ;copy the stack pointer
mov s1,8[bp] ;load the address return variable
mov [si],ds ;store contents of DS in return
variable
pop si ;restore the Sl register :
pop bp :restore the base page register
ret 2 ;return to basic
getseg endp
code ends
end

Language intesfaces 7

Non-BlOS routines

The task of the interface is to set up the DS:Sl registers prior
to entering the Device driver. The Sl pointer is set from the
contents of the string descriptor.

PAGE 60,132
TITLE Device driver Interface routine

CODE SEGMENT BYTE PUBLIC ‘CODFE’
ASSUME CS:CODE
PUBLIC IFACE
IFACE PROC NEAR
;This routine will be called with the following
;stack contents.

STACK: param. block offset : +2

(SP} ->: return address 0
PUSH BP ;save working
registers
PUSH Sl
MOV BPSP :point to stack.

{param.block offset
:will now be 6 bytes
down the stack)

MOV BRG[BP] ;BP points to string
descriptor
MOV SL1[BP] ;DS:S1now point to
paramater string
INT Oxxh ;call the device at
interrupt xxH
POP Sl ;restore the working
registers
POP BP
RET 2
IFACE ENDP
CODE ENDS
END

8 Language inierfaces

Unlike interpretive and Compiled Basic, the ‘C’ programming
language provides pointers to Parameter blocks in the
correct form and also offers a choice of Near or Far calls.

Interfaces are still required as for other languages to obtain
the Data Segment to support calls to the B1OS.

Examples of the interfaces are given below. They should be
assembled and linked to the Application.

The Data Segment Register

PAGE 60,132
TITLE Get the Data Segment register

pgroup group code

code segment byte public ‘code’
assume cs:pgroup
public getseg ;make this routine available
to basic
getseg proc far ;routine may be “Far or Near”
push bp ;save current base page register
push si ;save Sl register
mov bp,sp ;copy the stack pointer
mov si,8[bp] :load the address return
variable
mov [si],ds :store contents of DS in
return variable
pop si :restore the Sl register
pop bp ;restore the base page register
ret 2 ;

getseg endp
code ends
end

Language interfaces 9

PAGE 60,132 _
TITLE Device Driver Interface Program
PGROUP GROUP PROG

PROG SEGMENT BYTE PUBLIC "PROG’
ASSUME CS:PGROUP

PUBLIC IFACE
IFACE PROC NEAR

; This routine will be called with the following
;stack contents:

: STACK: param. block offset : +2

(SP)} ->: return address 0
PUSH BP :save working
registers
PUSH Sl
MOV BESP ;point to stack.

{(param.block offset
;will now be 6 bytes
down the stack)

MOV SI1.6[BP] :DS:S| now point to
paramater block
INT Oxxh ;call the device driver
with interrupt xxH
POP Si ;restore the working
registers
POP BP
RET 2
IFACE ENDP
PROG ENDS
' END

10 Language interfaces

b
S
=

ndex

A

ANSI escape sequences 3.3/4, 3.3/73
Application
interrupts 3.7/77
RAM 2.2/7
interface 7.2/4
Apricot compatibility 3.3/6, 3.4/27
ASCH
control codes 3.3/78
screen images 3.7/9, 3.7/20
Assembler 3.2/3
ASSIGN.SYS§ 3.70/78
Asynchronous
communications 2.2/719, 2.7 /41
mode 2.7/2, 2.7/6
Audio
output 2.7/2, 2.10/4
parameters 2. 70/7
tones 2.70/5
Auto repeat 3.4/4
Auxiliary audio input 2. 70/4

Bandpass filter 2. 70/ 4
BASIC 3.2/2
escape sequences 3.3/5
interface Appx f
Batteries 2. 72/3
Baud rate
reception 3.5/8
transmission 3.5/8
Bell 2.70/2, 3.3/ 18, 3.4/4, 3.4/18, 3.8/7
BI0S 71.2/2,2.7/33, 2.7/35,2.710/2, 3.1/2, 3.9/2
code 2.2/8
configuration table 3.7/9
data2.2/7
default constants 3.7/9
initialisation 3.7/7
parameter block 3.9/4

Index 7

pointers 3.7/8, 3.7/17
details 3.7/78
format 3.7/17
table 3.7/18
stack 2.2/7,3.7/9
working area 2.2/7
Bisync 2.7/3, 2.7/6,2.7/25
Bit
mapped RAM 2.2/6
screen image 3.7/20, 3.3/4
synchronous comms. 2.2/79
synchronous mode 2.7/3
Boot
disk 3.7/3
label sector 3.7/4, 3.4/4, 3.5/3, 3.9/2, 3.9/4
ROMS 2.2/8
routines 3.3/6
Bootstrap loader 2.2/8, 3.7/3
BPB 3.9/4
Byte synchronous
communications 2.2/79
mode 2.7/3

¢

C language interface Appx F
Calculator software 2.2/8, 3.7/8, 3.2/3
CAPSLOCK 3.4/4
Centronics interface 2.8/2, 2.2/20, 2.8/2
Character
attributes 2.4/5, 3.3/4, 3.3/34
font 1.2/13,3.17/7, 3.7/9
font default Appx C
Circuit diagrams Appx D
Clock driver 1.2/76, 3.71/56, 3.1/7, 3.2/23, 3.7/1
Cluster 3.9/4
Coldstart 3.7/3
Colour
ASCiHl index 3.3/70
ASClHlcode 3.3/70
palette 3.3/8
Communications 7.7/78
Compiled BASIC 3.2/3
interface Appx F
Compositevideo 2.2/73, 2.4/ 7
signal 2.4/6
socket 2.4/30
2 Index

CONFIG.8SYS 7.2/2
Configuration table 3.7/27, 3.3/70, 3.3/36, 3.4/22, 3.5/3
Configurator 3.4/20
Connectors 2.7/4
Control device 7.2/4, 1.2/10, 3.1/2, 3.1/7, 3.2/2
access 3.2/4, 3.2/6
errors 3.2/7
parameters 3.2/3
Control key 2.72/4, 2.12/10, 3.4/12
Controller programming 2.3/7, 2.3/13
Cooling2.7/4
Corvus Omninet 7.3/8
CTC (Counter/Timer) 2.7/2, 2.7/38, 2.9/2, 2.10/2
address allocation 2.9/8
channel O
exp. businterrupt 2.9/70
channel 1
RS232 baudrate 2.9/17
channel 2
sound frequency 2.9/ 74
channel 3
system clock interrupt 2.9/ 76
channel modes 2.9/4
channel usage 2.9/7
clock rates 2.9/5
components 2.9/4
downcounter 2.9/4
functions 2.9/2
initialisation 2.9/9
interrupt 2.9/5
vector 2.9/70
programming 2.9/9
return from interrupt 2.9/76
time constant 2.9/4
zero count 2.9/4
Cursor control 3.3/4
movement 3.3/78
Cyclic redundancy check
2.6/6,2.7/6,2.7/20 2.7/23, 2.7/29

Index

)

4

D

Date key 2.72/70,2.72/13
Date/time clock 3.7/ 7
DC distribution 2.7/77
Devicedriver 7.2/2, 1.2/11
setting 3.2/8
numbers 3.2/9
Diagnostics 2.2/8, 3.7/3
Digital Research 3.70/2
Disk
70track 2.77/2, 3.9/4
B80track2.77/13
cluster 3.9/4
control 2.2/15
controller 2.7/7, 2.2/3 2.6/3
drive 7.7/9, 2.1/3,. 2.1/9
combinations 3.9/4
configuration 3.9/9
connections 2.6/37
control 2.6/714
controller connections 2. 77/2
mechanism 2.77/9
motor control 2.6/78. 2.11/717
packing disks 2.77/2
second 2.7/5,2.11/2
selectcontrol 2.77/710
selection 2.6/ 78
specification 2.77/72
switch setting 2. 77/710
types 3.9/4
driver 7.2/15, 3.1/5, 3.2/26, 3.9/2
eject button 2.7/9
electronics 2.77/4
format2.6/2,2.71/14, 3.9/7
format for MS-D0OS 3.9/6
formatting 2.6/7
formatting commands 2.6/28
head loading 2.6/79,2.17/9
head positioning 2.6/8, 2.6/719, 2.11/9
head position commands 2.6/8
head select 3.7/2
indicator 2.7/9
insertion/removal 2.77/74
interface connection2.77/6
interface details 2.6/2, 2.771/4
label sector details 3.7/22

Index

MFM encoded data2.77/4
MS-DOS format 3.9/2
non-ACT 2.77/13
physical format 3.9/2
precautions 2.77/713
read 2.6/6
read address 2.6/29
read track 2.6/29
read/write heads 2.77/9
restore command 2.6/20
sensors and detector 2.77/70
swapping 3.9/2, 3.9/8
track format 2.6/28, 2.6/39
track image 2.6/37, 2.6/317
transportation 2.77/2
write 2.6/6
write protect 2.77/74
write track command 2.6/30
Display
access sequence 2.4/28
coding 2 colours 2.4/19
coding 4 colours 2.4/271
coding 8 colours 2.4/79
coding monochrome 2.4/79, 2.4/24
connectors 2.4/29
control 2.2/11,2.2/12
circuitry 2.4/7
schematic 2.4/6
drive signals 2.4/6
features 7.7/710
memory 2.2/11, 2.4]3
memory planes 2.4/9
mode selection 2.4/24
modes 7.2/73, 2.4/3
plane coding 2.4/ 718
RAM2.4/6,2.4/7, 2.4/3
RAM access control 2.4/27
refresh control 2.4/256
scrolling 2.4/5, 2.4/6
timing ROM 2.4/8, 2.4/27
timing signals 2.4/8
word 2.4/710
decoding 80 column 2.4/22
DMA facilities 2.2/77
Double sided disks 2.2/75, 2.6/2

Index 5

Downcode 7.2/77, 3.4/2
handler 3.4/717
fable 3.4/23

Dummy interrupt handler 3.7/7

E

Escape sequence 7.2/74, 3.3/4
ANSI 3.3/713
for palette setting 3.3/77
in BASIC 3.3/5
strings 3.3/5
table 3.3/4, 3.3/ 18, Appx E
Expansion
board 7.7/20, 1.3/5,2.2/16 2 CoP P
layout 2.5/76 Erro A ((p
bus 2.2/6) L
connector 2.5/7 (bool
slot2.2/13, 2.5/4, 2.5/12
addresses 2.5/712
compatible pins 2.5/4
electrical spec. 2.5/8
/O space 2.5/712
interrupt 2.5/73
interrupt set-up 2.5/74
pin detail 2.5/9
unit 7.3/11, 2.1]8, 2.2/16,2.2]17, 2.5/7

F

FDC (Floppy disk cntrl.)
command register 2.6/12, 2.6/15
commands 2.6/75
data register 2.6/76
datarequests 2.6/77
force interrupt command 2.6/33
interrupt flags 2.6/34
interrupt requests 2.6/72
pin definition 2.6/4
programming 2.6/717
read sector command 2.6/25
registers 2.6/717
sector register 2.6/ 76
seek command 2.6/27
status register
2.6/12, 2.6/15,2.6/16, 2.6/22, 2.6/26, 2.6/32

& Index

step command 2.6/27
step-in command 2.6/27
step-out command 2.6/27
system connections 2.6/35
track register 2.6/76
write sector command 2.6/24
Fibre opticlink 2. 72/3
File data transfers 2.6/23
Fixed position files 3.7/20
Fonts 2.4/4
alteration 3.3/ 716
edit utility 7.2/74, 3.3/76
pointer 2.4/4, 3.3/16
table 3.3/6
Frame peried 2.4/73
Front panel 2.7/6
Fuse2.7/77
rating 2.7/72

G

GD0OS 3.70/2
calls 3.70/5
Generic
BIOS 3.5/3
interface 3.7/2
keyboard 3.4/2
GINS 3.70/2
driver default 3. 70/78
Graphics
driver 7.2/3
extension system 3.70/2
interface 1.2/2, 1.2/6
GRAPHICS.EXE3.70/78
GSX 3.70/2
1.3 additions 3.70/6
863.70/2
bit block move 3.70/8
cell arrays 3.70/5
colour 3.70/4
cursor 3.70/14
escapes 3.70/5

Index 7

fill
attributes 3. 70/4
pattern 3.70/10
perimeter 3.70/ 710
rectangle 3.70/72
style 3.70/9
general drawing 3.70/4
input
choice 3.70/5
devices 3.70/86
locator 3.70/5
string 3.70/5
valuator 3.70/5
line attributes 3.70/3
line style 3.70/7
marker attributes 3.70/3
mouse button 3.70/76
mouse form 3.70/713
Prestel operations 3.70/76
system files 3.70/78
text attributes 3.70/3

H

Hamming code 3.4/2
Hamming format 2.72/7, 2.72/710
Handling key codes 7.2/712
Hard copy 3.3/4
Hardware
access 7.7/5
drivers 3.7/7,3.2/2
interrupts 3.7/76
Help key 3.4/76

Infra-red
detectorboard 2.7/8, 2.2/19
detectors 2.7/3
pulse conversion 2.7/8
signal 2.7/8
transmission 2.7/3
Initialised drivers 3.7/5
Internal configuration 3.7/4
Internal expansion slot 2.7/8

8 [Index

Interrupt
control 2.2/70, 2.3/ 9
details 3.7/72
disable 2.2/70, 2.3/3
enable 2.2/70, 2.3/3
pointer location 3.7/77
priority 2.2/70, 2.3/2, 2.3/5
requests 2.2/70
status reset 2.3/72
vector format 3.7/77
vectors 2.2/7, 2.3/3, 2.3/6,,2.3/11,3.1}]7, 3.1/9,
IRGB output 2.4/6

K

Key

click 3.8/7

code prefixes 3.4/ 74

decoding 3.4/2

edit utility 3.4/6

prefix 3.4/4

ring buffer 3.4/4

string pointer 3.4/3, 3.4/3

strings 3.4/8

strings default 3.4/73

switch array 2. 72/3

tops 2.72/3

Keyboard 7.7/73,2.12/2, 3.4/2

attributes 3.4/3

batteries 2.72/3

circuitry 2.72/4

click 2.70/2

data2.2/17, 2.7/2
encoding 2.72/6
format2.7/32,2.12/5
steering 3.4/76

driver 1.2/71,3.1/5, 3.2/12, 3.3/6, 3.4/2
alteration 3.4/70
initialisation 3.4/75

hamming format 2.2/718, 2.12}7

I.R.LEDS 2.72/3

lock 3.4/16

mechanics 2. 72/3

multi-key closure 2.72/5

power supply 2.72/2

queue 3.4/79

scanning 2.72/4

Index 8

serial packet 2.2/78

sleep mode 2.72/5

strings 7.2/72

synchronous format 2.72/7

table 3.7/7, 3.71/9, 3.4/2

table alteration 3.4/6

table default 7.2/717, Appx B

table save 3.4/7

transmission format 2. 72/6

user interrupt 3.4/74

x/y co-ordinates 2.72/9
Key edit utility 7.2/72

L

Language interfaces Appx F
Lightpipe 2.7/6, 2.7/8. 2.12/2
Local key 3.4/4

Logic circuitry 2.7/3

Loudspeaker 2.7/3, 2.2/27, 2.710/4

Machine code subroutines 3.2/5
Mains filter 2.7/ 70
Mains frequency 7.2/73
Maskable interrupts 2.3/70
Memory 7.7/8, 2.2/7
Memory map 2.2/9, 3.7/9
Modem board 7.3/6, 2.7/6, 2.7/24, 2.7/26, 2.7/ 38
Modem driver 7.2/3, 2.2/716
Monitor transformer 2. 7/70
Monochrome monitor 2.7/70
Monosync 2.7/2, 2.7/6, 2.7/25, 2.710/4, 2.12/7
Mouse
data2.2/17, 2.7/2, 3.4/2, 3.4/16, 3.5/2
data format 2. 7/32
driver 7.2/3, 1.3/9, 3.2/22
serial packet 2.2/78
MS-D0OS 1.2/2, 1.2/4, 1.3/8, 1.3/10, 3.1/9, 3.2/2, 3.4/2
disk format 3.9/6
MS-NET 7.3/8
Multi-key closure 2.72/5

70 Index

NMI2.2/3 2.2/11,2.2/16,2.2/17.2.3/4
Non MS-DOS systems 3.9/3

0
Op. system interface 7.2/8

P

PABX network 7.3/7
Palette
RAM 2.2/8, 2.4/8,. 2.4/10, 2.4/15, 3.3/8
programming 2.4/ 78
setting sequences 3.3/77
Parallel }/0O
configuration 3.6/2
driver 1.2/1715, 3.2/20, 3.6/2
status lines 3.6/2
Parallel printer port 2.2/20
Pascal 3.2/3
Photodiode 2.7/8
Physical dimensions 2.7/72
Pixelimage 2.2/771, 2.4/8, 3.7/20, 3.3/34,
Point 32 LAN 7.3/8
Port addresses 2.2/22
Power supply unit2.7/3, 2.7/10
Pre-boot arrow 3.7/2
Printer
addresses 2.8/6
connector 2.8/5
dataport 2.8/7
data strobe 2.8/7
data transfers 2.8/4
driver 3.7/5
interface 2.8/3
status 2.8/7
support 7.7/7
Processing capability 7.7/6
Processor, 808G 2.7/7, 2.2/3, 2.2/6, 2.2/15

Index 17

RAM
banks 2.2/7
BIOS 3.7/2, 37/20 3.2/2, 3.4/4
cards 2.2/76
disk 7.2/2
expansion 2.2/7
Register copy table 2. 7/356
Repeatratekey 2.72/70,2.712/12
Reset key 2.2/718, 2.12/710, 2.12/11
Return from
interrupt sequence 2.2/70, 2.3/3 2.3/12
ROM
BIOS 7.2/2, 1.2/4, 1.2/10, 1.3]/70, 3.7]2,. 3.1/4
data 3.7/9
RS232
baud rate 2.9/1713, 3.5/2
communications 2.2/79, 2.7/2, 2.7/38
connector 2.7/39
driver 7.2/15,3.1/5

S

Scanline modes 2.4/4
Screen
bitimage 2.2/7, 3.3/33
bit image map 3.3/34
bit plane 3.3/33
blanking 2.4/6
character attributes 3.3/4
character word 3.3/ 7
cursor addressing 3.3/75
driver 1,2/12,3.7/6, 3.2/10, 3.3/ 2
dump 3.3/4
environment 3.3/70
images 3.3/3
modes 3.3/6, 3.3/7, 3.3/35
scrolling 3.3/4, 3.3/35
windows 3.3/ 75
Scrolling effects 2.2/75
Serial
i/Qdriver 3.2/74, 3.5/2
driver differences 3.5/6
printer configuration 3.5/4
SETTIME key 2.72/710, 2.712/12, 3.1/8 3.4/16
SHIFT key 2.72/4.2.12]10. 3.4/12

72 Index

SHIFT LOCK 3.4/4
Simple noise 2. 70/5
Single-sided disks 2.7/9, 2.2/ 15, 2.6/2
SIO (Serial 1/0)
2712, ,28/3 28/7.2.10/2 2.10/4, 3.4/2, 3.5/2
address search 2.7/ 20
architecture 2.7/7
autoenable 2.7/27
base vector 2.7/41
block diagram 2.7/4
clock rate 2.7/22
configuration table 3.5/8
copy registers 2.7/35, 2.7/40
driver 3.5/2
configuration 3.5/3
differences 3.5/6

end of frame 2. 7/29

errorreset 2. 7/8

external interupt2.7/77

FIFO stack 2.7/8

hunt mode 2.7/27

interrupt2.7/7,. 2.7/8, 2.7/26,2.7/29

priority 2. 7/30, 2.8/7, 3.4/2

sequence 2.7/30

vector 2.7/18

mode 2.7/22

overview 2.7/5

parity 2.7/22

pin detail 2.7/45

port addresses 2. 7/77

port A
connections 2.7/47
programming 2.7/35
write register 1 2.7/37
write register 3 2.7/37
write register4 2.7/36
write register 7 2.7/37

port B
connections 2.7/489
interrupt 2.7/79
programming 2. 7/40
write register 1 2.7/44
write register 2 2.7/417
write register 3 2.7/44
write register 4 2.7/42
write registerb 2.7/43, 2.7/43

processor interface 2.7/ 717

read registers 2. 7/8, 2.7/25
read register 0 2.7/26
read register 22.7/289
ready controls 2.7/789
receive
bits 2.7/21
characters 2.7/26
enable 2.7/20
interrupt 2.7/79
path 2.7/8
RTS2.7/23
send break 2.7/24
status affectsvector 2.7/77, 2.7/18
SYnc
bits 2. 7/25
character 2.7/20
mode 2.7/22
system connections 2. 7/45
transmit
bits 2.7/24
buffer 2.7/26
enable 2. 7/24
interruptenable 2.7/717,2.7/18
path 2.7/710
user interrupts 3.5/6
write register 2.7/7, 2.7/12
2.7/13
27117
2.7/19
2.7/20
2.71217
2.7/23
2.7125
2.7/25 ’
auxresets 2.7/16
commands 2.7/73, 2.7/75
initialise 2.7/36
pointers 2.7/13
summary 2.7/13
update 2.7/35
Soft-sectoring 2.6/2
Software interrupt 7.2/6, 3.7/11

~NOMRWN O

74 Index

Sound
address allocation 2. 70/6
complex
duration 2.6/70
frequency 2.6/ 70
waveform 2.70/5, 2.6/70
driver 3.2/24, 3.8/ 1
timeout 3.7/2
duration 2.70/9 2.6/70
frequency 2.70/9
generation 2.2/21,2.7/34, 2.7/37, 2.710/2, 2.10/5
programming 2. 70/7
initialisation 2. 70/8,
simple tones 2. 70/8,
volume 2. 70/89,
waveform shape 2. 70/9,
Specialkeys 7.2/71, 2.712/10, 2.12/11, 3.4/12
Specification 7.7/27
Standard features 7.7/2
Start up
screen 3.7/3
sequence 2.2/18
Stepping motor rate bits 2.6/20
Synchronous mode 2.7/2, 2.7/6
Synthesized sounds 2.7/2, 2.10/5
Sysinit3.7/9
System
board 2.7/3,2.1/6, 2.2/3
data schematic 2.2/4
clock 2.2/70, 2.2/17
interrupt 2.9/2
mechanics 2.7/3
memory 2.5/12
RAM 2.2/7. 2.4/3
RAM map 2.2/7
reset 2.2/718
timer 2.2/27
Systems unit schematic 2.7/72

T

Telephone network 7.3/6
Text
attributes 3.3/8
with graphics 2.2/77, 2.4/3
TIMEDATE key 2.72/70, 2.12/13, 3.7/3 3.71/8 3.4/16
TIME — SET key 2.72/710, 2.12/12

Index 15

Track
format 2.6/2
position 2.6/8
register 2.6/8
TV modulator 2.2/73, 2.4/6, 2.4/7, 2.4/30

U

User
interrupt 3.4/ 74, 3.5/2, 3.5/6, 3.7/ 1
RAM 2.2/7, 3.3/6

)

Video
control signals 2.4/25
line pointers 2.2/7, 2.2/11, 2.4/3, 2.4/5, 3.71/20, 3.3/33
pointer RAM data 2.4/72, 2.4/ 15
signals 2.2/12
Virtual screen 7.2/74

W

Wait states 2.2/6

Warm start 3.7/3

Winchester
controller 2.2/76, 3.7/3, 3.9/2, 3.9/4
driver 7.2/77, 1.3/710, 3.7/6, 3.2/28
formatting 3.9/7
head select 3.7/2

Word processing
primitives 3.3/4

Z

280
CTC2.7/7, 2213 2.2/10, 2.2/19, 2.2/21, 2.3/2
registers 2.3/8
SI02.7/7, 2118 2.2]3, 2.2/10,2.2/17, 2.2]19,
22121, 2.3/2
registers 2.3/8

16 Index

§
=
=
=T

	Preface
	Contents
	Overview
	Section 2 - Hardware Detail 1-5
	Section 2 - Hardware Detail 6-12
	Section 3 -Software Detail
	Appendices A-C
	Appendices D
	Appendices D Schem 1
	Appendices D Schem 2
	Appendices D Schem 3
	Appendices E-F
	Index

